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1 Introduction

While rule-based algorithms can solve many real-world tasks, such heuristics do not generalize to
complicated tasks such as digit recognition. For example, when we tilt images, heuristics have to
add new rules manually. However, this is not efficient, and machine learning or pattern recognition
mitigates this problem. Machine learning has the computer learn decision rules automatically from a
set of examples; therefore, we do not need to add rules manually, and machine learning models learn to
predict outputs for unseen data from provided similar examples. Pattern recognition handles supervised
learning and unsupervised learning. Supervised learning includes regression and classification tasks.
Unsupervised learning includes clustering, density estimation, and subspace estimation.

In statistical pattern recognition, we often infer a various probability distribution from given data
or derive the optimal decisions from the distribution or directly from data. Inferences are performed
based on the following Bayes’ theorem:

p(θ|D) = p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

,

Posterior =
Likelihood× Prior

Marginal Likelihood

where D is a dataset and θ is a set of parameters for the posterior. The maximization of p(D|θ) is
called maximum likelihood estimation (MLE) and the maximization of p(D|θ)p(θ) is called maximum
a posteriori (MAP) estimation. Since MLE maximizes the likelihood of data, it is likely to overfit the
dataset. On the other hand, MAP estimation considers a prior distribution of a set of parameters, and
thus parameters are regularized towards the prior distribution. However, when we have less data, the
estimation is more uncertain. For this reason, we might need to reject the inference and analyze data
manually when MAP or the maximum likelihood is smaller than a certain threshold. In this notebook,
we handle the following three models:

1. Generative model: Learn the likelihood and prior from training data and approximate the
posterior. Since the dimension of data is high in most cases, the inference is more complex and
usually more difficult.

2. Discriminative model: Directly learn the posterior from training data. Since it does not
require high-dimensional inferences, this model is less complex.

3. Mappings: Directly learn a mapping from inputs to outputs. Probabilities do not play a role
anymore, and we can train this model with fewer data compared to previous two models.

The examples for each model is listed in Table 1. We will discuss more details in the next section.
Note that since classification methods such as linear discriminant analysis, AdaBoost, decision trees,
logistic regression, and support vector machines are discussed in the machine learning course, we do
not discuss those models in this notebook.
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Table 1: The examples for each model

Models Methods

Generative models Auto encoder
GAN

Discriminative models Logistic regression
Gaussian process

Mappings LDA
SVM
AdaBoost
Decision tree

2 Probability distribution

2.1 Bernoulli distribution

Suppose p(x = 1|µ) = µ represents the probability that we get x = 1 where x ∈ {0, 1}, then the
Bernoulli distribution is the following:

Bern(x|µ) = µx(1− µ)1−x.

The mean and variance of the distribution are E[x] = 0 × Bern(x = 0|µ) + 1 × Bern(x = 1|µ) = µ
and V[x] = µ(1 − µ). Additionally, given a dataset D = {xi}Ni=1 where each sample is obtained
independently, the MLE is computed as follows:

p(D|µ) =
N∏
i=1

Bern(xi|µ)

log p(D|µ) =
N∑
i=1

(
xi logµ+ (1− xi) log(1− µ)

)
∂

∂µ
log p(D|µ) =

N∑
i=1

(
xi

µ
− 1− xi

1− µ

)
=

n

µ
− N − n

1− µ

µMLE =
n

N

(
∵ ∂

∂µ
log p(D|µ) = 0

)
where n is the number of occurrences of xi = 0.

2.2 Binomial distribution

When we get x = 1 n times in the N -th tries of the task in the previous section, this probability is
calculated by binomial distribution and formulated as follows:

Bin(n|N,µ) = NCnµ
n(1− µ)N−n.

The mean and variance of the distribution are E[x] = Nµ and V[x] = Nµ(1 − µ). When we have
less data, the MLE tends to overfit the data. For this reason, we introduce a prior distribution
to suppress the overfitting. If we would like to infer the posterior, we use Bayesian inference;
however, when we only need a set of parameters that achieves the maximum posterior, we use MAP
estimation. Bayesian inference requires the marginal likelihood, which is often hard to compute.
On the other hand, when the prior is so-called conjugate prior, we can easily compute the posterior
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Table 2: The list shows the priors conjugate to the likelihoods that take specific distribution forms. The
posterior and the conjugate prior take the same form and the predictive distribution is the marginal
distribution.

Likelihood Parameters Conjugate prior Predictive distribution

Binomial µ Beta Beta · binomial
Multinomial µ Dirichlet Dirichlet · multinomial
Gaussian µ Gaussian Gaussian

Λ Wishart (Gamma for 1D) Student’s t
µ,Λ Gaussian-Wishart (Gauss-Gamma for 1D) Student’s t

distribution as the posterior distribution belongs to the same probability distribution family
as the prior distribution. The choice of the conjugate prior depends on the form of the likelihood.
Table 2 lists the correspondence of likelihoods and the conjugate prior distributions.

The conjugate prior of the binomial distribution is the following Beta distribution:

Beta(µ|α, β) = Γ(α+ β)

Γ(α)Γ(β)
µα−1(1− µ)β−1

where α, β ∈ R+ are hyperparameters that control the regularization effect and Γ(x) =
∫∞
0

tx−1e−tdt
is the Gamma function. As α and β become large, the prior will have more impact on the posterior
distribution. The posterior is computed as follows:

p(µ|n,N, α, β) ∝ µn+α−1(1− µ)N−n+β−1.

By maximizing the posterior, we obtain µMAP = n+α−1
N+α+β−2 and it converges to µMLE as N goes to

infinity. Note that we assume a-priori assumption, i.e. α/β = 1 in most cases; however, we often rely
on frequentism to determine those parameters to be objective. For example, we repeat experiments
for 100 times and take the probability of x = 1 as the ratio of α/β to eliminate one hyperparameter.

2.3 Multinomial distribution

The multinomial distribution is the general form of the binomial distribution. In other words, multi-
nomial distribution handles x ∈ RK where x is a one-hot vector and K is the number of categories.
The formulation is as follows:

Multi(x|µ) = N !∏K
k=1 nk!

K∏
k=1

µxk

k

where µk ≥ 0,
∑K

k=1 µk = 1, and
∑K

k=1 nk = N . Given a dataset D = {xi}Ni=1, the likelihood is
computed as:

p(D|µ) =
N∏
i=1

K∏
k=1

µ
xi,k

k =

K∏
k=1

µnk

k

where nk is the number of occurrences of xi = k. The maximization of the likelihood is solved using
the following Lagrangian multiplier:

L(µ, λ) =
K∑

k=1

nk logµk + λ

( K∑
k=1

µk − 1

)
.

The KKT conditions are satisfied when the derivatives with respect to µ and λ are zero and we obtain
µMLE = [n1/N, . . . , nK/N ].
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The conjugate prior of the multinomial distribution is the following Dirichlet distribution:

Dir(µ|α) =

Γ

(∑K
k=1 αk

)
∏K

k=1 Γ(αk)

K∏
k=1

µαk−1
k .

Using the Dirichlet distribution as a conjugate prior, we obtain the following posterior:

p(µ|n,α) ∝
K∏

k=1

µnk+αk−1
k .

The MAP estimation yields µMAP =

[
n1+α1−1

N+
∑K

k=1(αk−1)
, . . . , nK+αK−1

N+
∑K

k=1(αk−1)
,

]
.

2.4 Gaussian distribution

The D-dimensional formulation is the following:

N (x|µ,Σ) =
1

(2π)D/2|Σ|1/2
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
.

Note that (x − µ)⊤Σ−1(x − µ) is called mahalanobis distance. In the case of large D, we often
restrict Σ to be a diagonal matrix so that the inference time scales linearly to D in exchange for the
representational capacity.

2.4.1 Basic properties

Gaussian distribution is closed under conditioning, multiplication, marginalization and linear mapping.
Additionally, since the covariance matrix is always symmetric and positive definite, Σ can be decom-
posed by a principal axes transformation Σ = U⊤diag(λ1, · · · , λD)U where U is a unitary
matrix 1 and λi is an eigenvalue of Σ. Using this property, Σ−1 = U⊤diag(λ−1

1 , · · · , λ−1
D )U and we

obtain (x−µ)⊤Σ−1(x−µ) = (U(x−µ))⊤diag(λ−1
1 , · · · , λ−1

D )U(x−µ). In this formulation, U(x−µ)
is viewed as a new coordinate system and diag(λ−1

1 , · · · , λ−1
D ) as covariance matrix with no-correlation

between each coordinate. Note that principal component analysis uses this property.

2.4.2 Maximum likelihood estimation of parameters

Given a dataset D = {xi}Ni=1, the maximum likelihood is achieved when we take the following:

∂

∂µ
logN (xi|µ,Σ) = 0

∂

∂Σ
logN (xi|µ,Σ) = 0

By solving the equations, we obtain µMLE = 1
N

∑N
i=1 xi and ΣMLE = 1

N

∑N
i=1 xix

⊤
i − µMLEµ

⊤
MLE

Since the log-likelihood is computed using only the first momentum
∑N

i=1 xi and the second momentum∑N
i=1 xix

⊤
i , we call them sufficient statistics and we do not have to store each data point xi as long

as we store the sufficient statistics. The sufficient statistics are updated sequentially and it reduces the
overall time complexity. While the expectation of mean µMLE is µMLE, that of the covariance matrix

1A unitary matrix satisfies U−1 = U⊤.
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is:

NE[ΣMLE] = E
[ N∑
i=1

(µMLE − xi)
2

]

= E
[ N∑
i=1

(µMLE − µtrue + µtrue − xi)
2

]

= E
[ N∑
i=1

(xi − µtrue)
2

]
︸ ︷︷ ︸

=NΣtrue

+E
[ N∑
i=1

(µMLE − µtrue)
2︸ ︷︷ ︸

const w.r.t. i

]
− 2E

[ N∑
i=1

(µMLE − µtrue)(xi − µtrue)︸ ︷︷ ︸
=N(µMLE−µtrue)2

]

= NΣtrue −NE[(µMLE − µtrue)
2].

Then we transform E[µMLE − µtrue] as follows:

E[µMLE − µtrue] = V
[∑N

i=1 xi

N

]
=

1

N2
V
[ N∑
i=1

xi

]
=

N

N2
V[x] =

Σtrue

N

where the last transformation uses the assumption that x is sampled i.i.d. By plug-in the result,
we obtain E[ΣMLE] =

N−1
N Σtrue and this result implies that ΣMLE is underestimated compared to

the ground truth. Since the covariance matrix is biased when N is small, we often modify ΣMLE by
multiplying N

N−1 .

2.4.3 Bayesian inference of mean given variance

When we already know the covariance Σ, the likelihood of µ is computed as follows:

p(D|µ) =
N∏
i=1

N (xi|µ,Σ).

Since the conjugate prior is also the Gaussian distribution, we obtain the following posterior using the
prior p(µ) = N (µ|µprior,Σprior):

p(µ|D) ∝
( N∏

i=1

N (xi|µ,Σ)

)
N (µ|µprior,Σprior)

log p(µ|D) = −1

2

N∑
i=1

(xi − µ)⊤Σ−1(xi − µ)− 1

2
(µ− µprior)

⊤Σ−1
prior(µ− µprior) + const.

(1)

Let the mean and the covariance of the posterior be µpost and Σpost. Then the parameters take the
following form by transforming Eq. (1):

µpost = Σpost

(
Σ−1

N∑
i=1

xi +Σ−1
priorµprior

)
Σpost = (NΣ−1 +Σ−1

prior)
−1

Note that we can trivially obtain the case of D = 1 as follows:

σ2
post =

σ2σ2
prior

Nσ2
prior + σ2

µpost = σ2
post

(∑N
i=1 xi

σ2
+

µprior

σ2
prior

)
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2.4.4 Bayesian inference of variance given mean

First, we set Λ = Σ−1 for the sake of simplicity. In this case, the conjugate prior is Gamma distribution
for one dimension and Wishart distribution for multi dimensions:

Gam(λ|α, β) = βα

Γ(α)
λα−1e−βλ

logW(Λ|ν,W ) =
ν −D − 1

2
log |Λ| − 1

2
Tr(W−1Λ) + const

where α, β ∈ R>0 , ν > D − 1 and W ∈ RD×D is a positive definite matrix. Using this equation and
the fact that these are the conjugate prior of this setting, we obtain the following parameters:

One dimension : αpost =
N

2
+ αprior, βpost =

1

2

N∑
i=1

(xi − µ)2 + βprior,

Multi dimension : W−1
post =

N∑
i=1

(xi − µ)(xi − µ)⊤ +W−1
prior, νpost = N + νprior.

Using the posterior, the MAP estimate of λ,Λ is computed as:

λMAP = argmax
λ

Gam(λ|αpost, βpost) =
αpost − 1

βpost

ΛMAP = (ν −D − 1)Wpost

For the prediction of x, student’s t-distribution, which is obtained by the marginalization of the
posterior with respect to the prior, might be employed:

St(x|µ, t, ν) =
∫ ∞

0

N (x|µ, λ−1)Gam(λ|α, β)dλ =
Γ((ν + 1)/2)

Γ(ν/2)

(
t

πν

)1/2(
1 +

t

ν
(x− µ)2

)−(ν+1)/2

,

St(x|µ,T , ν′) =

∫
N (x|µ,Λ−1)W(Λ|ν,W )dΛ =

Γ((ν′ +D)/2)

Γ(ν′/2)

|T |1/2

(πν′)D/2

(
1 +

1

ν′
(x− µ)⊤T (x− µ)

)−(ν′+D)/2

where ν = 2α, t = α/β, ν′ = 1−D + ν, and T = (1−D + ν)W ∈ RD×D is a positive definite matrix.
Those are called predictive distribution, which does not depend on parameters of the posterior due
to the marginalization, and we can use it to predict the distribution of x. The student’s t-distribution
is advantageous because it has long tails compared to Gaussian distribution and it is robust to
outliers. Note that we, of course, need to set the hyperparameters of the prior distribution somehow
to yield the predictive distribution.

Another long-tail distribution is the Laplace distribution:

L(x|µ, b) = 1

2b
exp

(
−∥x− µ∥

b

)
If x is in 1D space, the MLE is obtained analytically as µ = med(x1, · · · , xN ), b = 1/N

∑N
i=1 |xi − µ|.

However, we do not have the closed-form if x is not in 1D space.

2.4.5 Bayesian inference of both mean and variance

In this case, the conjugate prior for 1D Gaussian is the product of the Gaussian distribution and the
Gamma distribution, i.e. Gauss-Gamma distribution. For multi-dimensional Gaussian, the conjugate
prior is the product of the Gaussian distribution and the Wishart distribution, i.e. Gauss-Wishart
distribution. The formulations are as follows:

p(µ, λ) =N (µ|µprior, (bλ)
−1)Gam(λ|α, β)

p(µ,Λ) =N (µ|µprior, (bΛ)−1)W(Λ|ν,W )
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Since p(µ,Λ|D) = p(µ|Λ,D)p(Λ|D) holds, we first derive the posterior of the mean p(µ|Λ,D) and
then estimate the precision matrix using p(Λ|D) = p(D|µ,Λ)p(µ,Λ)/p(µ|Λ,D). The closed forms are
available in this case as well. The predictive distribution for this case is the Student’s t-distribution
again and computed using log p(x) = log p(x|µ,Λ)−log p(µ,Λ|x)+const. Note that we use the results
from the posterior computation to calculate p(µ,Λ|x).

3 Clurstering and EM algorithm

Clustering is an unsupervised task to divide given data points into several groups. In this section, we
cover Gaussian mixture models (GMM) and K-means, and we discuss both methods from the view of
the EM algorithm.

3.1 Gaussian mixture models (GMM)

Since the typical parametric distributions have only limited representational capacity and many real-
world problems have multi-modal distributions, the following Gaussian mixture models (GMM) is
widely used:

p(x) =

K∑
k=1

πkN (x|µk,Σk)

where the mixture coefficients must satisfy πk ≥ 0 and
∑K

k=1 πk = 1. When we introduce discrete
latent variables, GMM is reformulated as:

p(x|z) =
K∏

k=1

N (x|µk,Σk)
zk

p(x) =

∫
p(x|z) p(z)︸︷︷︸

p(zk=1|z)=πk

dz

=

K∑
k=1

πkN (x|µk,Σk)

(2)

where z ∈ {0, 1}K is a one-hot vector. From Eq. (2), GMM is viewed as the marginalized likelihood
with respect to the latent variables z. Since πk, µk, and Σk are mutually dependent, a closed-form
solution for MLE is not available. Hence, we use an iterative scheme that jointly optimizes the latent
variables and the parameters. This scheme is called expectation-maximization (EM) algorithm and
we will see the details in the next section.

3.1.1 EM algorithm for GMM

We first consider the E step where we take the expectation with respect to the latent variables. E
step assumes that we have complete dataset X,Z and compute the following using Bayes’ theorem:

γk,i := p(zk = 1|xi) =
p(xi|zk = 1)p(zk = 1)∑K

k′=1 p(zk′ = 1)p(xi|zk′ = 1)

=
πkN (xi|µk,Σk)∑K

k′=1 πk′N (xi|µk′ ,Σk′)

where γk,i is called responsibility of the k-th cluster for the i-th data point and it realizes a soft-
assignment to each cluster. Then the log-likelihood of given data points is computed as:

log p(X|π,µ,Σ) =

N∑
i=1

log

(
K∑

k=1

πkN (xi|µk,Σk)

)
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The next step is M step where we consider the maximization of log likelihood given the responsibilities
and incomplete datasetX. Since we have a constraint

∑K
k=1 πk = 1, we need to consider the following

Lagrange multiplier:

L(π,µ,Σ, λ) = − log p(X|π,µ,Σ)− λ

( K∑
k=1

πk − 1

)
The KKT conditions for L(π, λ) are the following:

Stationarity :
∂L
∂πk

= 0,
∂L
∂µk

= 0,
∂L
∂Σk

= 0,

Primal feasibility :

K∑
k=1

πk = 1.

From the stationary conditions, we obtain:

∂

∂µk
log p(X|π,µ,Σ) = −

N∑
i=1

γk,iΣ
−1
k (xi − µk) = 0

µk =
1

Nk

N∑
i=1

γk,ixi

∂

∂Σk
log p(X|π,µ,Σ) =

N∑
i=1

γk,i

(
−1

2
Σ−1

k +
1

2
Σ−1

k (xi − µk)(xi − µk)
⊤Σ−1

k

)
= 0

Σk =
1

Nk

N∑
i=1

γk,i(xi − µk)(xi − µk)
⊤

∂L
∂πk

= −
N∑
i=1

γk,i
πk
− λ = 0

πk =
Nk

N

(3)

where Nk =
∑N

i=1 γk,i. Those mean and covariance correspond to the weighted average of those
obtained from the fed data points. Note that the global maximum of the likelihood is achieved by
taking the singular covariance matrices at each data point, and thus we need to avoid shrinking to one
of the trivial solutions by initializing far away from such solutions or applying a prior to the
covariance to avoid such shrinkage.

In summary, the EM algorithm for GMM is performed as follows after the initialization of µ,Σ,π:

1. E step: Compute the expectation of the latent variables given fixed parameters:

γk,i := E[zk|xi] = p(zk = 1|xi), and

2. M step: Given the responsibilities, maximize the log-likelihood as in Eq. (3)

µk =
1

Nk

N∑
i=1

γk,ixi, Σk =
1

Nk

N∑
i=1

γk,i(xi − µk)(xi − µk)
⊤, πk =

Nk

N
.

Each iteration guarantees the improvement from the last iteration and thus the EM algorithm always
yields a local optimum.
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3.2 K-means

K-means algorithm divides a given dataset X into K clusters where K is a control parameter. This
algorithm minimize the following criterion:

L(r,µ) =
N∑
i=1

K∑
k=1

γk,i∥xi − µk∥2.

We iteratively minimize L as follows:

1. E-step: Minimize L with respect to γ by assigning each data point to the closest cluster center

γk,i =

{
1 if k = argmink′ ∥xi − µk′∥2
0 otherwise

, and

2. M-step: Minimize L with respect to the centroid µk by MLE

∂L
∂µk

= 2

N∑
i=1

γk,i(xi − µk) = 0

µk =

∑N
i=1 γk,ixi∑N
i=1 γk,i

.

The differences are (1) the responsibilities γk,i are either 0 or 1, and (2) the covariance matrix is singular,
i.e. hard assignment. In other words, the second point implies that GMM approaches the result of
K-means as Σk goes to 0. Note that the computational complexity in each iteration is O(KND) and
this algorithm also guarantees to converge to a local minimum. Furthermore, the parameter selection
of K changes the result drastically, and K = N leads to the kernel density estimator.

3.3 General EM algorithm

Now we consider the more general form of EM algorithm. Given a dataset X, we would like to
maximize the following likelihood:

p(X|θ) =
∫

p(X,Z|θ)dZ.

We assume that the optimization of the complete-data likelihood p(X,Z|θ) is tractable while the
direct optimization of the incomplete-data likelihood p(X|θ) is intractable. Therefore, we decompose
the optimization problem into two subproblems: (1) to estimate the expectation of the latent variables
given a data point p(Z|X,θold) = E[Z|X,θold] (E step), and (2) to maximize complete-data likelihood
given the expectation and the fixed parameters (M step). More formally, we compute:

log p(X|θ) = EZ∼q(Z)[log p(X|θ)] (∵ p(X|θ) does not depend on Z)

= EZ∼q(Z)

[
log

p(X,Z|θ)
p(Z|X,θ)

]
(∵ Bayes’ theorem)

=

∫
q(Z) log

p(X,Z|θ)
q(Z)

dZ︸ ︷︷ ︸
=LELBO(q,θ) → log p(X|θ)

+

∫
q(Z) log

q(Z)

p(Z|X,θ)
dZ︸ ︷︷ ︸

=DKL(q∥p) → 0

(4)

where q(Z) is an approximate distribution of the latent variables and LELBO(q,θ) is the evidence lower
bound (ELBO) of likelihood. Since the LHS of Eq. (4) is constant and the KL-divergence takes zero
when q(Z) = p(Z|X,θold), we obtain log p(X|θ) = LELBO(p(Z|X,θold),θ). Hence, the maximization
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of ELBO given the distribution q(Z) = p(Z|X,θold) yields the MLE of p(X|θ) under this condition.
Then ELBO is reformulated as follows:

LELBO(p(Z|X,θold),θ) =

∫
p(Z|X,θold) log

p(X,Z|θ)
p(Z|X,θold)

dZ

=

∫
p(Z|X,θold) log p(X,Z|θ)dZ︸ ︷︷ ︸

M-step

+ const.

By repeating these two steps, we can iteratively maximize the likelihood p(X|θ). The EM algorithm
guarantees the improvement of ELBO and converges to a stationary point (, but no guarantee of a local
maximum in general). Even when closed-form solutions for both steps are not available, generalized
EM algorithm enables the iterative optimization of the likelihood.

4 Non-parameteric methods

While parametric models and GMM have limited representational capacity, non-parametric methods
dynamically change their capacities according to the number of data points N , and thus are unbiased
as N goes to infinity. In this section, we discuss non-parametric density estimation methods.

The advantages of non-parametric methods are (1) simplicity and (2) to be able to capture general
densities. On the other hand, the computational and memory complexity increase linearly in the
number of data points and it often suffers from overfitting.

4.1 Density estimation methods

4.1.1 Histogram

The histogram is the most basic probability density estimation method. We first divide the parameter
space X into bins and count the number of occurrences in each bin. In other words, we define each
bin as ∆i, and we assume that the parameter space X is covered by the union of bins X =

∪
i ∆i and

each bin does not intersect ∆i ∩∆j = ∅. Then the probability density p(x) is computed as:

p(x) =
ni

NV (∆i)

(
∵
∫

p(x)dx =
∑
i

p(x)V (∆i) = 1,
∑
i

ni = N

)
where ni is the number of data points that belong to the i-th bin and V : RD → R+ is a volume
measure. The advantages of the histogram are that (1) we can discard samples once we check to which
bin they belong, and (2) the algorithm is simple. On the other hand, the choice of the bin width
affects the estimation. While small bins can capture detailed information, it causes overfitting. In
contrast, large bins prevent overfitting; however, it loses local details. Furthermore, although some
samples might be close to boundaries, especially in high dimensions, the histogram counts each sample
towards only one bin. This issue gives rise to the loss of information in some regions. To mitigate this
issue, one might introduce weighted counting.

4.1.2 Kernel density estimation (KDE)

Kernel density estimation (KDE) represents the density as the sum of kernel functions as follows:

p(x) =
1

N

N∑
i=1

k(xi,x).

Histogram is a special case of KDE and we can choose the kernel function freely as long as it satisfies
k(x, ·) ≥ 0,

∫
k(x, ·)dx = 1 and is sufficiently smooth. The benefits of KDE are to (1) not need
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EM algorithm, (2) be able to achieve high accuracy and (3) require only one hyperparameter
(bandwidth). On the other hand, we have to store all the training samples and the bandwidth cannot
locally adapt to the data. Additionally, since it is a low-biased model, it is likely to overfit easily. For
this reason, we need to perform cross validation to choose the robust bandwidth. One example of loss
measure is the following expected leave-one-out negative log-likelihood:

E[L(h|x)] = 1

N

N∑
i=1

L(h|xi)

where L(h|xi) = − log

(
1

N − 1

∑
j ̸=i

k(xi,xj ;h)

)
.

We optimize this metric either via direct search or gradient descent. Since the Epanechnikov kernel
has short tails and assures convergence, we often use this kernel.

An alternative loss measure is the following integrated squared error:

L(h) =
∫
(p(x)− p̂(x))2dx

=

∫
p(x)2dx︸ ︷︷ ︸
const

−2
∫

p̂(x)p(x)dx︸ ︷︷ ︸
E[p̂(x)]≃ 1

N

∑N
i=1 p̂(xi)

+

∫
p̂(x)2dx.

This loss measure guarantees the convergence.
Additionally, in most real-world applications, we are interested in the maximum density rather

than the density function. The mean-shift algorithm realizes the identification of the local maxima.
Considering the Gaussian kernel and the learning rate α = h2, then we obtain the following update:

xt+1 =

∑N
i=1 xik(xi,xt)∑N
i=1 k(xi,xt)

where the equation is derived by the gradient ascent using ∂ log p(xt)
∂x .

4.1.3 K-nearest neighbors method (KNN)

As discussed, KDE does not adapt the bandwidth, and thus the density is not optimal. In dense
regions, it does not show the optimal density due to over-smoothing. In sparse regions, it does not
show the optimal density due to overfitting. The following KNN is a remedy for this problem.

p(x) =
K

NV (x)

(
∵ p(x|Ci) =

Ki

NiV (x)
, p(Ci) =

Ni

N

)
where V (x) is the minimum hypersphere volume which includes the K-nearest neighbors and K plays
a role of smoothing. In contrast to KDE, KNN yields noisy estimates in dense regions and large
K leads to more smoothing effect and biased estimate. Bayesian formulation for KNN is the following:

posterior =
likelihood× prior

marginal likelihood

p(Ci|x) =
p(x|Ci)p(Ci)∑
j p(x|Cj)p(Cj)

=
Ki/NiV (x)×Ni/N

K/NV (x)
=

Ki

K

where Ki is the number of neighbors that belong to the i-th class and Ni is the number of data points
that belong to the i-th class. From this equation, the posterior of the i-th class given the data point
x is p(Ci|x) = Ki/K. KNN is a straightforward way of classification; however, the performance is
sensitive to the parameter selection of K and KNN often suffers from noisy estimates in dense regions.



Statistical Pattern Recognition / Shuhei Watanabe 12/23

4.1.4 Adaptive KDE

While KDE provides accurate density in dense regions, it underestimates density in sparse regions due
to the fixed bandwidth. On the other hand, KNN provides smoothing effect in sparse regions. This
fact gives rise to the following adaptive KDE:

p(x) =
1

N(2π)D/2|Σ(x)|1/2
N∑
i=1

exp

(
−1

2
(xi − x)Σ(x)−1(xi − x)⊤

)
,

Σ(x) =
1

K

∑
xi∈S

(xi − x)(xi − x)⊤ (S is a set of K-nearest neighbors).

Since the variance is calculated based on the K-nearest neighbors, this KDE provides more stable esti-
mates both in sparse and dense regions. Note that we call the kernel in the adaptive KDE Anisotropic
kernel and determine the optimal K via cross validation.

4.2 Space subdivision

Since KNN requires the comparison of distances to each data point, the time complexity increases
linearly to the number of data points. However, if we subdivide the parameter space beforehand, we
can achieve sublinear time complexity. We list major space subdivision methods:

1. K-d trees: Subdivide the space along each coordinate using CART algorithm and optionally
allocate weights to points close to boundaries (Spill trees),

2. Tree-structured vector quantization (TSVQ): Subdivide the space with linear lines along
arbitrary directions using K-means with K = 2, and

3. Randomized trees: Build multiple trees and consider the union of all points obtained from
each tree as neighbors.

Each method aims to filter a group of points that are close to a point of interest. Obviously, if we
increase the accuracy of the inference, the searching takes more time. While the quickest algorithm is
the K-d tree, it suffers from the curse of dimensionality. The other two algorithms behave better in
high dimensions. Another solution is the spill trees that consider a margin from each boundary and
view points in the margin belonging to both subspaces; however, if we make this margin too large,
the memory requirement grows exponentially. Notice that each tree requires O(N logN) to build and
O(logN) for inference if we view the split procedure as O(1).

5 Regression

5.1 Preliminaries (Causal relation of variables)

First, we consider three types of causal relations (called triple):

1. Head-to-tail (A→ B → C): p(A,B,C) = p(A)p(B|A)p(C|B),

2. Tail-to-tail (A← B → C): p(A,B,C) = p(A|B)p(C|B)p(B), and

3. Head-to-head (A→ B ← C): p(A,B,C) = p(B|A,C)p(A)p(C).

Then if p(A,C|B) = p(A|B)p(C|B) or p(B|A,C) = p(B|A) holds, A and C are said to be conditionally
independent givenB. When we consider p(A,C|B), head-to-tail and tail-to-tail type exhibit conditional
independence while head-to-head type does not. If two nodes are connected with an edge, those two
nodes are obviously conditionally dependent. The test of the conditional independence of two nodes
is called d-separation. The test between Nodes u and v is performed by checking the following:
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1. Enumerate all (undirected) paths from u to v,

2. Divide each path into a set of triples and check whether all triples are active, and

3. Return “true” if there is at least one path; otherwise “false”.

Note that a triple is active if and only if:

1. Head-to-tail (A→ B → C): B is unobserved,

2. Tail-to-tail (A← B → C): B is unobserved, and

3. Head-to-head (A→ B ← C): B or one of its descendants (in the directed graph) is observed.

Throughout this section, we assume p(X,y,w) = p(y|X,w)p(X)p(w) (head-to-head), and thus
the posterior of w given y is not conditionally independent of X although it is in a prior.

5.2 Bayesian linear regression

Bayesian linear regression gives an uncertainty measure to the linear regression. The linear regression
assumes that the output y follows the Gaussian distribution with a fixed variance σ and performs
MLE to estimate p(y|X,w). On the other hand, Bayesian linear regression computes the posterior
distribution of weights p(w|X,y) using Bayes’ theorem as follows:

posterior =
likelihood× prior

marginal likelihood
,

p(w|X,y) =
p(y|X,w)p(w)∫
p(y|X,w)p(w)dw

.

Since the denominator p(y|X) does not depend on the weightw and the denominator generally requires
a complicated integral, we use MAP estimation 2. In the MAP estimation, we maximize the following:

posterior ∝ likelihood× prior,

p(w|X,y) ∝ p(y|X,w)p(w).
(5)

Since the conjugate prior for the likelihood p(y|X,w) = N (y|Xw, σ2I) 3 with Gaussian distribution
with unknown mean is Gaussian distribution, the following holds:

Prior : w ∼ N (0,Σprior),

Posterior : p(w|X,y) ∼ N (µpost,Σpost)

where Σprior is a covariance matrix of the prior p(w) that controls the regularization effect and are
chosen via cross validation, and

µpost =
1

σ2
ΣpostX

⊤y,Σpost =

(
1

σ2
X⊤X +Σ−1

prior

)−1

(6)

are the parameters of the posterior. This result is directly derived by transforming Eq. (5). Using
weights sampled from the posterior, the prediction of Bayesian linear regression is computed as follows:

p(y|x,X,y) =

∫
p(y|x,w)p(w|X,y)dw

= N (µ⊤
postx,x

⊤Σpostx).

(7)

Note that we can replace X with a set of non-linear mapping Φ such as Φ = [1, x, x2, ..., xd]. When
we use the Laplace prior, we can promote the sparsity of the model although a closed-form solution
will not be available anymore.

2MLE is equivalent to MAP estimation with the uniformly distributed marginal likelihood.
3σ2 is estimated via MLE, i.e. σ2 := σ2

MLE = ∥y −Xw∥2/N
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5.3 The evidence approximation

Since Bayesian linear regression requires control parameters and they obviously affect the prediction,
we need to determine those parameters via cross validation. However, cross validation is demanding
in this case. For this reason, we consider the marginalization of the control parameters and the
(approximated) marginalization is performed via so-called evidence approximation. We define
Σ−1

prior = αI, 1/σ2 = β, and D = (X,y) in this section. Then the marginalization is computed as:

p(y|x,D) =
∫

p(y|x,w, β)p(w|α, β,D)p(α, β|D)dwdαdβ.

Note that we use p(y|x,w,θ,D) = p(y|x,w,θ,D)p(w|θ,D)p(θ|D) where θ is a set of hyperparameters
for a likelihood and a prior, and the independence of x and the conditional independence of D 4 for
the derivation of the equation above. However, this marginalization is not feasible analytically without
any assumptions. For this reason, we introduce the following two assumptions:

Assumption 1

1. The posterior p(α, β|D) is sharply peaked around optimal values α⋆, β⋆

p(y|x,D) ≃ p(y|x, α⋆, β⋆,D) =
∫

p(y|x,w, β⋆)p(w|α⋆, β⋆,D)dw.

2. The prior distribution p(α, β) is a non-informative, i.e. the uniform distribution

p(α, β|D) ∝ p(D|α, β)p(α, β) ∝ p(D|α, β).

From those assumptions, we can reformulate the estimation as MLE of α⋆, β⋆ via the maximization
of the follwoing evidence function:

p(y|x, α, β) =
∫

p(y|x,w, β)p(w|α)dw

=

(
β

2π

)N/2(
α

2π

)D/2 ∫
exp

(
−β

2
∥y −Xw∥2 − α

2
∥w∥2

)
dw.

(8)

The optimization of the evidence function is achieved by EM algorithm that takes w as latent variables.
In E step, we first compute the posterior as follows:

p(w|α, β,D) ∝ N (w|µpost,Σpost) := N (µ,Λ−1)

where µpost,Σpost are identical to those in Eq. (6). Since the following holds,

β

2
∥y −Xw∥2 + α

2
∥w∥2 =

1

2
(w − µ)⊤Λ(w − µ) +

β

2
∥y −Xµ∥2 + α

2
∥µ∥2︸ ︷︷ ︸

const w.r.t. w

,

we can transform the integral in Eq. (8) as follows:∫
exp

(
−β

2
∥y −Xw∥2 − α

2
∥w∥2

)
dw = exp

(
−β

2
∥y −Xµ∥2 − α

2
∥µ∥2

)∫
exp

(
−1

2
(w − µ)⊤Λ(w − µ)

)
dw

=
(2π)D/2

|Λ|1/2
exp

(
−β

2
∥y −Xµ∥2 − α

2
∥µ∥2

)
.

4 p(x,θ,w,D) = p(x)p(θ,w,D) and p(y|x,w,θ) = p(y|x,w,θ,D).
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Therefore, the log-likelihood in E step is computed as follows:

log p(y|x, α, β) = N

2
log

β

2π
+

D

2
logα− 1

2
log |Λ| − β

2
∥y −Xµ∥2 − α

2
∥µ∥2.

In M step, we maximize the log-likelihood and the solution for MLE is the following:

α⋆ =
γ

∥µ∥2
, β⋆ =

(
1

N − γ
∥y −Xµ∥2

)−1

where γ =

D∑
i=1

λi

λi + αold
,

and λi is the eigenvalue of βX⊤X. Since λi are close to the eigenvalues of the posterior covariance
matrix Σpost, λi is viewed as the variance of principle axes. For this reason, we can measure the
effective number of well-determined dimensions or the dimensions not dominated by prior via
γ. For example, when we have sufficient training data points, the covariance becomes large and thus
γ becomes large and dominates the noise control factor α. On the other hand, when |λi| ≪ |αold|, the
regularization effects dominate the prediction.

6 Kernel methods

6.1 The properties of the kernel function

The definition of kernel function is as follows:

Definition 1
kernel function k : X ×X → R is a similarity measure of given points x,x′. This function must
satisfy the following properties:

1. Symmetric: k(x,x′) = k(x′,x)

2. Semi-positive definite: ∀n ∈ N≥1,∀a ∈ Rn,
∑n

i=1

∑n
j=1, aiajk(xi,xj) ≥ 0

We must design kernel functions to satisfy the properties. The following operations over kernel
functions always yield another kernel function:

1. Additive: k1(x,x
′) + k2(x,x

′), k1(xa,x
′
a) + k2(xb,x

′
b)

2. Multiplication: ck1(x,x
′), f(x)k1(x,x

′)f(x′), k1(x,x
′)k2(x,x

′), k1(xa,x
′
a)k2(xb,x

′
b)

3. Others: exp(k1(x,x
′)),x⊤Ax

where c ∈ R>0, f(x) : X → R and A ∈ RD×D is a positive semi-definite matrix. Kernel functions
often assume smoothness, and it controls the overestimation or underestimation. For example, more
smoothing leads to generalization and biased estimates. Note that if a kernel function is
represented as a function of x − x′, it is called stationary kernel and it is invariant to translation
and if a kernel function is a function of ∥x−x′∥, it is called isotropic kernel or radial basis function
and it is invariant to translation and rotation. Stationary kernels are often not sufficiently flexible, and
thus we combine other kernels and optimize all hyperparameters via the maximization of log-likelihood
using gradient ascent 5. An isotropic kernel can handle graphs and images well. The drawbacks of
kernel methods are (1) poor extrapolation, (2) shrinkage to zero-mean prediction in sparse regions.

5Since the objective is often non-convex, we aim to find a local maximum.
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6.2 Kernel regression

When we reformulate linear regression from the Bayesian view as in Eq. (7), we obtain the following:

p(y|x,D) = N (y|µ⊤
postx,x

⊤Σpostx),

E[y] =
1

σ2
y⊤ XΣ⊤

postx︸ ︷︷ ︸
Dot product

.

By replacing the dot product 1/σ2XΣ⊤
postx with a summation of a kernel function k : X × X → R,

the expression is reformulated as follows:

y(x) =

n∑
i=1

yik(xi,x)

where (xi, yi) is the i-th training data point. Note that this procedure works for non-linearly mapped
feature space Φ(X) ∈ RN×D instead of X and the kernel function corresponds to the feature set
is called the equivalent kernel. Since this representation does not have the basis function and
the number of operations depends on the number of data points, we can reduce the computational
complexity (kernel trick) in the case of N < D where D might be potentially infinity.

6.3 Regression using kernel density estimation

Since the goal of regression tasks is to estimate the conditional distribution p(y|x), we can calculate it
from the following:

p(y|x) = p(x, y)∫
p(x, y)dy

p(x, y) =
1

N

N∑
i=1

k({x, y}, {xi, yi})

For the sake of simplicity, we define u = {x, y}. Using this formulation, the predictive mean is
computed as:

ŷ(x) =

∫
yp(y|x)dy =

∑N
i=1

∫
yk(u,ui)dy∑N

i=1

∫
k(u,ui)dy

(∵ The denominator does not depend on y)

=

∑N
i=1

(∫
(y − yi)k(u,ui)dy +

∫
yik(u,ui)dy

)
∑N

i=1

∫
k(u,ui)dy

=

∑N
i=1 yi

∫
k(u,ui)dy∑N

i=1

∫
k(u,ui)dy

(∵ Assume zero mean kernel)

=

∑N
i=1 yig(x,xi)∑N
i=1 g(x,xi)

(
Define g(x,x′) :=

∫
k(u,ui)dy

)

=

N∑
i=1

w(x,xi)yi

(
Define w(x,xi) :=

g(x,xi)∑N
j=1 g(x,xj)

)
.

This model is called Nadaraya-Watson model. Intuitively, this model weights each yi with a weight
w(x,xi) that measures the similarity between x and xi. Although the conditional distribution p(y|x)
is a multimodal distribution, we assume that the prediction ŷ(x) follows a unimodal Gaussian noise.
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6.4 Gaussian process (GP) regressor

6.4.1 Formulation

The Gaussian process (GP) drops the intermediate estimation of weights w ∈ R∞ and directly esti-
mates priors in the function space Φ = {ϕi}∞i=1 where ϕi : X → R is a (usually non-linear) mapping.
First, we assume that the observation y given a data point x follows:

y = f(x) + ϵ = w⊤Φ(x) + ϵ, ϵ ∼ N (0, λ).

In other words, the likelihood is p(y|f) = p(y|Φ,w) = N (y|Φw, λI) where we define Φ := Φ(X) ∈
RN×∞ and w = N (0, σ2I). Then the moments of the likelihood are the following:

E[Φw] = ΦE[w] = 0,

V[Φw] = E[Φw(Φw)⊤] = ΦE[ww⊤]Φ⊤ = σ2ΦΦ⊤ = K.

Therefore, the prior is p(f) = N (f |0,K) where f = Φw ∈ RN×N and we obtain the following
marginal likelihood:

p(y) =

∫
p(y|f)p(f)df = N (y|0,K + λI).

Using this result, we obtain the following predictive distribution given a new data point:

p

([
y

yN+1

])
∼ N

(
0,

[
K + λI kN+1

k⊤
N+1 k(xN+1,xN+1) + λ

])
:= N

(
0,

[
CN kN+1

k⊤
N+1 cN+1

])
= N (0,CN+1),

where ki = [k(x1,xi), · · · , k(xN ,xi)]
⊤. Since both p(y) and p(yN+1) follows the Gaussian distribution,

the conditional distribution is computed as follows:

p(yN+1|y) = N (k⊤
N+1C

−1
N y, cN+1 − k⊤

N+1C
−1
N kN+1)

where the transformation uses the formula p(xa|xb) = N (µa +ΣabΣ
−1
bb (xb −µb),Σaa −ΣabΣ

−1
bb Σba)

given p(xa) = N (µa,Σa), p(xb) = N (µb|Σb). Note that if all non-diagonal elements of K are close to
zero, the prediction overfits the training data and if most elements in K have similar values, it implies
that the predictions are biased due to over-smoothing. From the representor theorem, we can compute
the predictive mean as follows:

µ(x) =

N∑
i=1

αik(x,xi) (9)

where the weights are α = C−1
N y.

This formulation can be derived from the linear-combination perspective as well. Suppose we would
like to optimize the following loss function:

L(y,Φw) =
1

2
(y −Φw)⊤(y −Φw) +

λ

2
∥w∥2,

∂L(y,Φw)

∂w
= −Φ⊤y +Φ⊤Φw + λw,

Stationarity: w⋆ = Φ⊤ 1

λ
(y −Φw)︸ ︷︷ ︸

Dual variable: α

= Φ⊤α.
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Therefore, the dual problem of this optimization is the following:

L(y,α) =
1

2
(y −ΦΦ⊤︸ ︷︷ ︸

=K

α)⊤(y −ΦΦ⊤α) +
λ

2
α⊤ΦΦ⊤α

=
1

2
(y −Kα)⊤(y −Kα) +

λ

2
α⊤Kα,

∂L(y,α)

∂α
= −Ky +K2α+ λKα,

Stationarity: α⋆ = (K + λI)−1y = C−1
N y.

This result is identical to that in Eq. (9).
The matrix inversion dominates the computational complexity of the training and that costs O(N3),

and the inference costs O(N2). If the feature dimension D is less than N , linear regression of non-
linear features will be more efficient. Since the matrix inversion is not feasible when N is large, we
often exploit the fact that most elements in K are close to zero and consider K as a sparse matrix
to reduce the computational complexity. Other options are Bayesian committees and Nyström
approximation . Bayesian committees combine estimates on different subsets of size M(< N) and
assume that KM×M ≃ KM×Ndiag[θ1, · · · , θN ]KN×M ∈ RM×M . The estimation of θ costs O(M3)
and the inference costs O(NM2) due to the matrix multiplication. Nyström approximation exploits
the low-rank approximations of KN×N ≃ KN×MK−1

M×MKM×N and it is guaranteed that there is
a kernel matrix KM×M that satisfies this approximation. The eigendecomposition of KM×M costs
O(M3) and the computations of eigenvectors costs O(NMP ) where P is the number of eigenvectors
to use. Overall, it costs O(M3 +NMP ).

6.4.2 Automatic relevance determination (ARD)

Stationary kernels have the same influence from each axis because we use the same bandwidth for all
dimensions; however, some features often have more impact than the others. To address this issue,
automatic relevance determination (ARD) considers the following kernel:

k(x,x′) = θ0 exp

(
−1

2
(x− x′)⊤diag[θ1, θ2, · · · , θd](x− x′)

)
where θi is a hyperparameter. These hyperparameters are optimized via the maximization of the
following log-likelihood:

log p(y|θ) = −1

2
log |CN (θ)| − 1

2
y⊤CN (θ)−1y − N

2
log 2π

∂

∂θi
log p(y|θ) = −1

2
Tr

(
C−1

N (θ)
∂CN (θ)

∂θi

)
+

1

2
y⊤C−1

N (θ)
∂CN (θ)

∂θi
C−1

N (θ)y.

We can find local maxima of θ via gradient ascent. The computational complexity of the optimization
is dominated by the inversion of CN (θ), which costs O(N3). Once the optimization completes and
C−1

N (θ) is computed, the inference requires O(N2).

6.5 Mixture of regressors

Regression task usually supports only the Gaussian distribution and cannot handle multimodal dis-
tributions; however, many real-world applications, such as the prediction of traffic at a junction have
multimodal distributions. Such prediction is realized by the mixture of regressors:

p(y|f ,θ) =
K∑

k=1

πkN (y|w⊤
k Φ(x), λ)
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where θ is a set of all hyperparameters λ,wk, πk and f = [w⊤
1 Φ(x), . . . ,w

⊤
KΦ(x)]. As in GMM, we

apply the EM algorithm, which again takes z as latent variables, to infer the optimal parameters. We
first define fk,i := w⊤

k Φ(xi). E-step evaluates the posterior of the latent variables:

γk,i = E[zk,i|xi] = p(zk,i = 1|xi,θold) =
πkN (yi|fk,i, λ)∑K

k′=1 πk′N (yi|fk,i, λ)

M-step maximizes the expectation of the complete-data likelihood given definitions F ∈ RN×K and
Fi,k = fk,i := w⊤

k Φ(xi):

log p(y|F ,θ) = Ez[log p(y, z|F ,θ)] =

N∑
i=1

log

( K∑
k=1

πkN (yi|fk,i, λ)
)
,

∂ log p(y|F ,θ)

∂wk
=

N∑
i=1

γk,i
λ

(yi − fk,i)Φ(xi) = 0,

∂ log p(y|F ,θ)

∂λ
=

N∑
i=1

K∑
k=1

γk,i

(
1

2λ2
(fk,i − yi)

2 − 1

2λ

)
= 0⇒ λ =

1

N

N∑
i=1

K∑
k=1

γk,i∥y − Φ(X)wk∥2,

∂L(θ)
∂πk

= 0⇒ πk =
1

N

N∑
i=1

γk,i (Same KKT conditions in Eq. (3)).

When we define a responsibility matrix as Rk = diag[γk,1, . . . , γk,N ] and a feature matrix Φ(X) :=
Φ ∈ RN×∞, the derivative with respect to wk is transformed as follows:

Φ⊤Rk(y −Φwk) = 0⇒ wk = (Φ⊤RkΦ)−1Φ⊤Rky.

We iteratively optimize and obtain the local maxima. However, the mixture coefficients are still fixed
for all x and it potentially shows overestimation of probability densities in sparse regions because it
assumes the same multi-modality over the whole space. Mixture of experts model circumvents
this issue. This model defines πk as a function of x, i.e. πk := πk(x) (Gating function), so that the
modalities dynamically changes based on regions. The optimization of the gating function is solved by
separately applying the EM algorithm.

7 Sampling methods

7.1 Monte-Calro (MC) sampling for the expectation

The basic usage of Monte-Carlo (MC) sampling is to take an expectation of f(x) given a distribution
p(x):

E[f ] =
∫

f(x)p(x)dx

≃ 1

M

M∑
i=1

f(x(i))

where M is the number of samples. Although MC works nicely with very few samples regardless of the
dimensionality of x if x(i) is i.i.d, MC suffers from (1) difficulties to get independent samples,
and (2) dominant samples, i.e. large |f(x)|, from regions with small probability.

7.2 Sampling from standard distributions

Suppose we would like to obtain 1-dimensional samplings x from a certain distribution f(x). We con-
sider to convert a uniformly distributed random variable z ∼ U(0, 1) to a sample from the target distri-
bution f(x). Since the value range of the cumulated probability distribution F (X ≤ x) =

∫ x

−∞ f(x′)dx′
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is always [0, 1], the conversion is achieved by x = F−1(z) as long as F−1(z) has an analytical form or
a special library. The obvious issue of this method is no generalization to a distribution that does not
have an analytical F−1.

7.3 Rejection sampling

Rejection sampling is another sampling method used when F−1 is difficult. In rejection sampling, we
assume that we know the analytical form of p(x) (or we must know the shape, i.e. p̃(x) := Cp(x), at
least) and we have a standard distribution q(x) from which we can sample easily. We first determine
a fixed factor k such that p(x) ≤ kq(x) holds for all x. Then the rejection sampling is performed as
follows:

1. Draw a sample x0 from q(x),

2. Accept the sample with the probability of p(x0)/kq(x0); otherwise reject it and back to 1.

The acceptance probability is generally computed as follows:

paccept =

∫
p(x)

kq(x)
q(x)dx =

1

k

Since the choices of k and q(x) are hard for high dimensions and high dimensions typically leads to
large k, this algorithm is not used for high-dimensional distribution p(x). Note that the efficiency of
this algorithm depends on the acceptance probability and the ideal k is 1.

7.4 Importance sampling

If the goal is to estimate an expectation value and the analytical form of p(x) is available, we can use
the following importance sampling:∫

f(x)p(x)dx =

∫
f(x)

p(x)

q(x)
q(x)dx

≃ 1

M

M∑
i=1

p(x(i))

q(x(i))
f(x(i))

where each point is sampled from q(x) and p(x)/q(x) is called importance weight. In contrast to
the rejection sampling, the bound k is not required; however, if q(x) is not close to p(x), importance
weights will be biased, and thus the expectation value will be biased as well. Since when we have
many samples with a large weight, those will have more impact on the expectation value and those
samples change each time. and vice versa, the importance sampling will yield high variance. Since the
ideal density ratio is 1, the following effective sample size is checked:

Leff =

M∑
i=1

p(x(i))

q(x(i))
.

When we get only small importance weights, Leff becomes much smaller than M and the expectation
value will have a totally different scale. In summary, although importance sampling is a useful algo-
rithm, since results are likely to be biased or to have high variance easily, we need to pay attention to
the distribution of weights.
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Algorithm 1 Metropolis Hastings

q(x|x′) ▷ Proposal distribution. This is typically Gaussian distribution with mean = x.
1: function Metropolis Hastings
2: for t = 0, 1, . . . , T do
3: x ∼ q(·|x(t))

4: x(t+1) = x with the probability of min

(
1, p(x)q(x(t)|x)

p(x(t))q(x|x(t))

)
otherwise x(t)

7.5 Markov chain Monte-Carlo (MCMC) sampling

MCMC samples each weight according to a proposal distribution or transition distribution
q(x|x′) and moves around the space while accepting or rejecting the proposal. Since the next state
depends only on the current state, it is called Markov chain. For the final sampling, we use every t-th
sample from the history to avoid the correlation between samples close to each other in terms of time
steps. Ideally, this sample approximates the target distribution p(x), i.e. stationary distribution.

7.5.1 Metropolis hastings

The major algorithm for MCMC is Metropolis-Hasting in Algorithm 1. The sufficient condition for a
stationary distribution to exist is that the detailed balance p(x(t))q(x

(t+1)|x(t)) = p(x(t+1))q(x(t)|x(t+1)).
In practice, even when the detailed balance is satisfied, it may still take time to reach the stationary
distribution. This time (from the beginning) is called mixing time. Intuitively, the distribution
reaches the stationary distribution when the chain forgets the beginning states. Therefore, we take
samples after a burning-in phase, and the length of the burning-in phase is a hyperparameter. Al-
though MCMC often fails if each peak of modalities is far away from each other, MCMC can sample
from multimodal distributions.

7.5.2 Gibbs sampling

Another variant of the Metropolis-hastings algorithm is the Gibbs sampling. Gibbs sampling is an
efficient algorithm that samples each dimension separately conditioned on other dimensions. The
fomulation is the following:

x
(t+1)
1 ∼ p(x1|x(t)

2 , x
(t)
3 , · · · , x(t)

D )

x
(t+1)
2 ∼ p(x2|x(t+1)

1 , x
(t)
3 , · · · , x(t)

D )

...

x
(t+1)
D ∼ p(xD|x(t+1)

1 , x
(t+1)
2 , · · · , x(t+1)

D−1 )

where D is the dimension of x and the conditional distribution is usually computed as Gaussian
distribution.

8 Dimension reduction methods

In practice, even when data has high dimensions, intrinsic dimensions are usually fewer than the actual
dimension size. Since high dimensional data usually causes the curse of dimensionality and it is hard
to visualize, dimension reduction is sometimes necessary. In this section, we discuss several methods
for dimension reduction.
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8.1 Principal component analysis (PCA)

Assuming we have a dataset X = [x1, . . . ,xN ]⊤ ∈ RN×D, we would like to reduce the dataset to
X ′ ∈ RN×d such that d < D. PCA uses linear mapping to project onto another space so that
the variance in the projected space will be maximized and the projection error will be
minimized. For the sake of simplicity, we first consider d = 1. Suppose we map the dataset to 1D
space by a unit vector u ∈ RD, then the objective is the following:

max
u∈RD

u⊤Σu subject to ∥u∥2 = 1 where Σ =
1

N

N∑
i=1

(xi − µ)(xi − µ)⊤,µ =
1

N

N∑
i=1

xi.

Since this is a constraint optimization, the formulation results in the following Lagrange multiplier:

L(u, λ) = u⊤Σu− λ(∥u∥2 − 1).

From the KKT conditions, we obtain Σu = λu and the solution of this equation is obviously u to be
an eigenvector of Σ. Since Σu = λu and ∥u∥ = 1, the variance in the new space will be u⊤Σu = λ.
The objective is to maximize the variance, so the eigenvector u with the largest eigenvalue λ will be
the solution. When d > 1, we just need to take d eigenvectors with the eigenvalues till the d-th largest
and we define a mapping as U = [u1, . . . ,ud] ∈ RD×d. Then the projection is computed as:

xp = µ+

d∑
i=1

((x− µ)⊤ui)ui

where (x − µ)⊤ui is an orthographic projection of x − µ onto ui. Note that the projection error is
computed as:

∥xp − x∥2 =

( D∑
i=d+1

((x− µ)⊤ui)ui

)2

=

D∑
i=d+1

∥((x− µ)⊤ui)ui∥2 (∵ u⊤
i uj = 0 if i ̸= j)

=

D∑
i=d+1

u⊤
i (x− µ)(x− µ)⊤ui.

Plugging this result into the definition ofΣ, we obtain the projection error of
∑D

i=d+1 λi. WhenD > N ,
1
NXX⊤(Xu) = λ(Xu) is more efficient rather than 1

NX⊤Xu = λu as XX⊤ ∈ RN×N . When we

define v := Xu, we can reconstruct the eigenvector for the original problem as u = 1/(Nλ)1/2X⊤v
where the coefficient will be different depending on whether we have the constraint ∥v∥2 = 1 or not.

PCA is known to be a special case of multi-dimensional scaling (MDS). While PCA preserves
Euclid distances between each data point as much as possible, MDS does so for an arbitrary distance
metric. Since MDS handles an arbitrary distance metric, MDS can map features non-linearly, unlike
PCA. MDS includes kernel PCA and Isomap.

8.2 t-distributed stochastic neighbor embedding (t-SNE)

We use t-SNE mostly for visualizations of a high-dimensional space and it preserves the local structure.
This method matches the pair-wise similarities in both the original and the reduced spaces as follows:

1. Similarities in the original space: Compute similarities using the Gauss kernel

pi,j =
exp(−∥xi − xj∥2/2σ2

i )∑
k ̸=i exp(−∥xi − xk∥2/2σ2

i )
,
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2. Similarities in the reduced space: Compute similarities using the t-distribution

qi,j =
(1 + ∥yi − yj∥2)−1∑
k ̸=i(1 + ∥yi − yk∥2)−1

,

3. Calculation of mismatching measure: Build perplexity matrices (pi,j + pj,i)/2N and (qi,j +
qj,i)/2N and compute the mismatch measure via:

DKL(P∥Q) =
∑
i ̸=j

pi,j log
pi,j
qi,j

4. Minimize the mismatching measure: Gradient descent of DKL(P∥Q) with respect to y.

Note that we compute σi using K-nearest neighbors as in adaptive KDE and the reduced space uses
t-distribution because lower-dimensional spaces are crowded and a long-tailed distribution is desirable.


