
Simulation in Computer Graphics / Shuhei Watanabe 1/23

Simulation in Computer Graphics

Shuhei Watanabe

March 31, 2021

1 Patricle motion

In the simulation of particle motion, there are three main tasks:

1. Object Subdivision: Divide objects into small components 1

2. Force Modeling2: Introduce the model that dominates the motion of each component (e.g.
Newton’s 2nd law)

3. Particle Motion Reproduction: Solve the ordinary differential equation (ODE) to compute
the position and the velocity at each time step

1.1 Object Subdivision

To compute the position and the velocity of object accurately, we divide the object of interest into
small particles and compute the forces or the accelerations of each particle. Each particle has mass
m ∈ R, volume V ∈ R, density ρ ∈ R, position x ∈ R3, velocity v ∈ R3, and force F ∈ R3. To
compute the positions and the velocities at each iteration, we have to store these variables.

1.2 Particle Motion Reproduction

As mentioned in the previous section, each particle is governed by given force models and positions
and velocities of each particle are computed based on given initial values and given force models. Since
the positions and the velocities change over time and we have to consider the existence of other
particles, the computation must be implemented using time discretization 3. For example, the two
objects tied by spring has to consider the interaction. In other words, the acceleration of a particle
will be computed using not only its position and velocity, but also others’ positions and velocities i.e.
a = a(xself ,vself ,xothers,vothers).

1.3 Finite Differences

Since each particle motion is governed by ODE, we have to consider the interaction with other particles
as well. The major solution is Finite Difference Equation (FDE). In FDE, we consider the following
assumption:

Assumption 1
Suppose ϵ is a real number and sufficiently small, then the function f(x+ϵ) can be approximated
by the first order of Taylor series approximation, i.e.

f(x+ ϵ) ≃ f(x) + df(x)
dx ϵ

where Taylor series approximation is f(x) =
∑∞

n=0
f(n)(x)ϵn

n!

1The shape of components are arbitrary.
2A variety of models can be considered such as gravity, friction, compression.
3Even two-body problems are considered hard to solve analytically.

Simulation in Computer Graphics / Shuhei Watanabe 2/23

Using this assumption, derivatives of a given function can be trivially introduced as follows:

f(t+∆t) ≃ f(t) +
df(t)

dt
∆t ⇒ df(t)

dt
≃ f(x+∆t)− f(x)

∆t
(1)

The first equation of Eq. (1) is called Explicit Euler (e.g. x(t+∆t) ≃ x(t) + v∆t) 4. This equation
includes the O(∆t2) error term.

There are many variants of FDE methods and the common goal is to eliminate all the terms
whose dimension is less than k. Depending on this k, the accuracy of the method varies. Note
that the computational complexity at each iteration is mostly dominated by the computation of
accelerations. For this reason, it is important to consider the trade-off between the number of
computation of accelerations 5 and the accuracy. Hereinafter, we denote xi = x(i∆t). In most cases,
we will use the following series:

xi+1 = xi +
dxi

dt
∆t+

d2xi

dt2
∆t

2
+

d3xi

dt3
∆t3

6
+

d4xi

dt4
∆t4

24
+O(∆t5) (2)

1.3.1 Midpoint Method

dxi+ 1
2

dt
=

dxi

dt
+

d2xi

dt2
∆t

2
+O(∆t2) (3)

From (2)− (3)×∆t,
xi+1 = xi + vi+ 1

2
∆t+O(∆t3)

Note that vi =
dxi

dt holds in general.

1.3.2 Heun Method

dxi+1

dt
=

dxi

dt
+

d2xi

dt2
∆t+O(∆t2) (4)

From (2)− (4)×∆t/2,

xi+1 = xi + (vi+1 + vi)
∆t

2
+O(∆t3)

1.3.3 Ralston Method

dxi+ 2
3

dt
=

dxi

dt
+

d2xi

dt2
2∆t

3
+O(∆t2) (5)

From (2)− (5)× 3∆t/4,

xi+1 = xi + vi
∆t

4
+ vi+ 2

3

3∆t

4
+O(∆t3)

1.3.4 3 / 8 Rule

dxi+ 1
3

dt
=

dxi

dt
+

d2xi

dt2
∆t

3
+

d3xi

dt3
∆t2

18
+

d4xi

dt4
∆t3

162
+O(∆t4) (6)

From (2)− dxi/dx× 1/8− (6)× 3∆t/8− (5)× 3∆t/8− (4)× 1∆t/86,

xi+1 = xi +
1

8
(vi + 3vi+ 1

3
+ 3vi+ 2

3
+ vi+1)∆t+O(∆t5)

4In generall, explicit method is the method computing the future value only with previously computed values.
5In the situation where we have to detect the collisions, the computational complexity will be much more expensive.
6I used the series up to the term of ∆t3 for each.

Simulation in Computer Graphics / Shuhei Watanabe 3/23

1.3.5 Classic Runge Kutta Method

k1 = vi(xi)

k2 = vi+ 1
2
(xi + k1∆t/2)

k3 = vi+ 1
2
(xi + k2∆t/2)

k4 = vi+1(xi + k3∆t)

xi+1 = xi +
∆t

6
(k1 + 2k2 + 2k3 + k4) +O(∆t5)

1.4 Implementation and Performance

Since each particle interacts with each other and we have to consider the collisions, the positions and
the velocities of each particle have to be computed at the same time. The flow of the computation in
the case of Midpoint method is as follows:

1. Compute all the velocities and positions at time t+∆t/2

2. Detect the collisions and compute the forces based on obtained velocities and positions

3. Update the positions and velocities using the values at time t and t+∆t/2

The performance of simulation depends on the following three properties:

Definition 1

1. consistent: If the discretization error vanishes as the time step ∆t goes to zero

2. stable: If the error is not amplified within simulation steps

3. convergent: If the solution of FDE approaches that of ODE in the end

Inconsistency is basically caused by the representational limit of numbers (e.g. 64 bit) in program-
ming languages. For example, if the derivative is super small or large, float cannot deal with the digit
and it leads to overflow or zero value. If it is not stable, velocities typically divergent. Additionally,
there are two other terms for stability.

1. Conditionally Stable: The simulation can be stable under some conditions

2. Unconditionally Stable: The simulation is stable under all circumstances

The simulation is convergent when the simulation is stable and consistent.
It is important to consider the trade-off between a time step size and the accuracy as well. Since

the update procedure is computationally expensive, we would like to take as large a time step size
as possible. As mentioned above, the order of the error term in the Runge Kutta method is O(∆t5).
Therefore, the method can take a larger time step size compared to explicit Euler. For example, while
explicit Euler achieves the error order of 1/400 by taking ∆t = 1/20, the Runge Kutta method achieves
the same order by ∆t = 3/10. It means the Runge Kutta method can finish the simulation with six
times less iterations 7.

7This discussion makes sense if and only if the simulation is stable.

Simulation in Computer Graphics / Shuhei Watanabe 4/23

1.5 Predictor-corrector schemes

This method literally performs the prediction of accelerations and the correction of the accelerations.
Therefore, it approximates accelerations twice for each iteration. One benefit of this method is
that it can achieves arbitrary accuracy using data from previous time steps. In fact, as seen in the
explicit schemes, we can eliminate up to O(∆tk) when we use data from k − 1 different time steps as
follows:

vpredict
i+1 = vi +

∆t

2
(3ai − ai−1) +O(∆t3)

vpredict
i+1 = vi +

∆t

12
(23ai − 16ai−1 + 5ai−2) +O(∆t3)

· · ·

xpredict
i+1 = xi +

∆t

2
(3vi − vi−1) +O(∆t3)

xpredict
i+1 = xi +

∆t

12
(23vi − 16vi−1 + 5vi−2) +O(∆t3)

· · ·

These coefficients can be easily derived in the same vein for explicit schemes. This method modifies
vpredict
i+1 in so-called the correction step.

vi+1 = vi +
∆t

2
(a(xpredict

i+1 ,vpredict
i+1) + ai) +O(∆t3)

xi+1 = xi +
∆t

2
(vpredict

i+1 + vi) +O(∆t3)

This step can also achieve better accuracy if you stored much more previous time steps. This order of
the correction scheme is same as the Heun method.

In summary, this method requires twice approximation so-called prediction and correction steps,
so the time complexity is twice expensive. However, it can achieve arbitrary accuracy if we store
as much previous data as possible. Note that this accuracy is an indicator, and it totally depends on
the stability and discontinuity of simulations. Plus, since this method requires the data from previous
time steps, we have to approximate the data before the initial state, which can be obtained by
the backward-Euler scheme. Lastly, the correction step can be performed several times to improve the
accuracy.

1.6 Implicit scheme and linearization

Implicit schemes for velocities use the future accelerations.

1. Implicit schemes: More stable, but it cannot be processed directly because of the non-linearity
of accelerations

2. Linearization: The solution for the non-linearity of the implicit scheme

3. Linear system solver: The solution for linear system with sparse and huge (, that is why
practically not invertible) matrix

1.6.1 Implicit schemes

The explicit scheme has the following form:

xi+1 = xi + vi∆t

vi+1 = vi + ai∆t

Simulation in Computer Graphics / Shuhei Watanabe 5/23

where xi+1 = x(i∆t). On the other hand, the implicit scheme is the following form:

xi+1 = xi + vi+1∆t

vi+1 = vi + ai+1∆t

Basically, the implicit scheme uses future values to approximate future values and does not use the
current velocities as in the Heun method. Therefore, the implicit scheme can typically avoid the
influences from collisions that are supposed to happen between the current and the successive time
steps. The greatest benefit of the implicit scheme is the stability. However, since we use future
accelerations and thus have to solve a huge linear system in the implicit scheme, this scheme requires
the linearization and the solver.

1.6.2 Linearization

To linearlize future accelerations, we assume that accelerations only depends on positions, but
not on velocities. By introducing such an assumption, the linear system with respect to future
velocities can be obtained as follows:

vi+1 = vi + ai+1(xi+1)∆t

vi+1 = vi + ai+1(xi + vi+1∆t)∆t (∵ Implicit Euler)

vi+1 = vi + (ai + Jvi+1∆t)∆t

For the last transformation, we use the Taylor series approximation ai+1(xi + vi+1∆t) = ai +
(∇ai)vi+1∆t+O(v2i+1∆t2) and ai+1(xi) = ai. Additionally, J is a jacobian matrix defined as follows:

J =
[
∂a
∂x ,

∂a
∂y ,

∂a
∂z

]
Therefore, the following linear system can be obtained:

(I3 −∆t2J)vi+1 = vi + ai∆t

where IK ∈ RK×K is an identity matrix. Since we consider the interaction of each particle and each
position affects each acceleration, practically we also have to consider the jacobian with respect to other
particles. Therefore, this notation can be expanded to the N particles and we obtain the following
linear system:

(I3N −∆t2J)Vi+1 = Vi +Ai∆t

where Vi ∈ R3N is the vector that stacks velocities of each particle and Ai ∈ R3N is the vector that
stacks accelerations of each particle. Furthermore, the jacobian matrix is the following:

J1

J2

. . .

JN


where Ji (1 ≤ k ≤ N) is the jacobian matrix for the k-th particle. The jacobian matrix for each
particle is placed on the diagonal elements of J and other elements are the interacting terms, which
are the influence from adjacent particles. The computation of the inverse matrix costs O(N3) and it
is not feasible for large scale particle simulations. However, the combination of adjacent particles 8

is assumed to be small enough; therefore, this matrix is sparse and it can be solved using iterative
methods. After solving the linear system, we obtain the position xi+1 using the solution vi+1. Note
that each data (Ji,vi,ai) is held by each particle and interactive terms Ji,j are held by adjacent
connections.

8If the i-th and the j-th particles are not adjacent each other, the submatrix Ji,j is zero matrix.
9If A ∈ Rn is positive definite and symmetric, it will converge in n step.

Simulation in Computer Graphics / Shuhei Watanabe 6/23

Table 1: Pros and cons of Conjugate gradient and Jacobi method

- Conjugate gradient Jacobi method

Pros Fast and guarantee of convergence9 larger variety of applicability
Often used for deformable objects parallelizable

Cons Conditional guarantee of convergence Needs to tune parameter ω
Not widely used compared to Jacobi method Slower and longer iterative steps to converge

1.6.3 Solver for large and sparse linear system

In this section, we discuss how to solve Ax = b and we use this notation Ax = b. When the size of x
is large, it is not feasible to invert the matrix A (∵ the complexity is O(n3) when A ∈ Rn×n 10). For
this reason, we approximate the solution x using the following iterative methods:

1. Conjugate gradient: Minimizes ∥Ax− b∥2 using gradient descent while being the conjugate

2. Jacobi method: Decomposes A into the diagonal elements D, upper triangle elements U , lower
triangle elements L (, where A = D + L+ U) and iteratively optimize x

The advantages and the disadvantages of each method are listed in Table 1. Note that both methods
are matrix-free method, so we can apply this method to sparse matrices.

1.7 Semi-implicit Scheme

This method is a combination of implicit and explicit schemes. Velocities are computed by an explicit
scheme and positions are updated by an implicit scheme. Therefore, this method does not require
linear system solvers.

1.8 Second-order ODE

Second-order ODEs do not necessarily require velocities for update. The underlying concept for the
second-order schemes are the equation between positions and accelerations as follows:

ai =
∂2xi

∂t2

The Taylor series approximation of xi+1,xi−1 is the following:

xi+1 = xi + vi∆t+ ai
∆t2

2
+

dai

dt

∆t3

6
+O(∆t4)

xi−1 = xi + vi(−∆t) + ai
(−∆t)2

2
+

dai

dt

(−∆t)3

6
+O(∆t4)

= xi − vi∆t+ ai
∆t2

2
− dai

dt

∆t3

6
+O(∆t4)

(7)

Therefore, by summing up xi+1 and xi−1, we obtain the following equation:

xi+1 + xi−1 = 2xi + ai∆t2 +O(∆t4)

xi+1 = 2xi − xi−1 + ai∆t2 +O(∆t4)

xi+1 = xi +
xi − xi−1

∆t︸ ︷︷ ︸
Velocity term

∆t+ ai∆t2 +O(∆t4)
(8)

10Each particle has 30-40 adjacents in fluid simulation, so the complexity of conjugate gradient is O(30n2) ≃ O(n2)

Simulation in Computer Graphics / Shuhei Watanabe 7/23

This equation is the basic update formula in second-order ODE schemes. In simulations, we assume
that the initial positions x0 and the initial velocities v0 are given. The advantage of this method is
even though we do not necessarily need velocities and we only need to compute accelerations
once, we still obtain the better accuracy O(∆t4) than the explicit euler 11.

1.8.1 Verlet

Verlet uses the update shown in Eq. (8). The advantages of this method are the following:

1. one acceleration computation per step

2. do not require velocities computation

3. the error order O(∆t4)

On the other hand, when we need velocities in simulations, we need to compute v using finite difference
equations (FDE). In this case, the error order of v is O(∆t) and it is not accurate. We need velocities,
for example, when we would like to introduce contact handling. Another issue of this method is the
overhead caused by storing the previous positions.

1.8.2 Leap-frog

The update formula of this method is the following:

xi+1 = xi + vi+ 1
2
∆t

vi+ 3
2
= vi+ 1

2
+ ai+1∆t

(9)

This method is the explicit scheme for both x and v. However, this method uses different time points
and this is motivated in terms of the stability. Furthermore, this method uses the acceleration computed
using the velocities above. The major issue of this method is the computation of accelerations. As seen
in Eq. (9), we do not compute vi explicitly; therefore, if the computation of a relies on v, we have to

interpolate vi+1. If we choose the central differentiation ai =
vi+1/2−vi−1/2

∆t , this method is equivalent
to the Verlet method.

1.8.3 Velocity Verlet

In the Verlet method, the accuracy of velocities are remarkably lower than that of positions. To address
this issue, the velocity Verlet are proposed. The update of both x and v are performed using explicit
schemes as follows:

xi+1 = xi + vi∆t+ ai
∆t2

2
+O(∆t3)

vi+1 = vi + (ai+1 + ai)
∆t

2
+O(∆t3)

(∵ RHS = vi + (ai +
dai

dt
∆t+O(∆t2) + ai)

∆t

2
+O(∆t3)

= vi + ai∆t+
dai

dt

∆t2

2
+O(∆t3))

Note that this method assumes that the accelerations do not depend on the velocities. Although this
method also requires only one acceleration computation per step. However, it achieves better accuracy
than the explicit euler.

11Since explicit euler requires acceleration computation once, we compare to this method. The error order is O(∆t).

Simulation in Computer Graphics / Shuhei Watanabe 8/23

1.8.4 Beeman

The Beeman method further improves the accuracy of the velocity verlet. The updates are performed
using the following:

xi+1 = xi + vi∆t+

(
2

3
ai −

1

6
ai−1

)
+O(∆t4)

vi+1 = vi +

(
5

12
ai+1 +

2

3
ai −

1

12
ai−1

)
∆t+O(∆t4)

The coefficients of the velocity update can be derived using the Taylor series approximation as well.
This method also requires only one acceleration computation per step. However, extra storage for the
previous accelerations can be overhead of the method.

1.8.5 Gear

The gear method is one of the predictor-corrector schemes. To introduce this method, we first define
the notation used in the method.

Definition 2
∀i, k ∈ N, we define

rki =
dxk

i

dt

∆tk

k!

Using this notation, each xi+1,vi+1,ai+1 can be represented as follows:

xi+1 = ri+1
0 =

5∑
k=0

kC0r
i
k +O(∆t6)

vi+1∆t = ri+1
1 =

5∑
k=1

kC1r
i
k +O(∆t6)

ai+1
∆t2

2
= ri+1

2 =

5∑
k=2

kC2r
i
k +O(∆t6)

(10)

Note that for all k = 0, · · · , 5, the following holds:

ri+1
j =

5∑
k=j

kCjr
i
k +O(∆t6)

First, we predict xi+1,vi+1,ai+1 using Eq. (10). Additionally, we compute the acceleration a(ri+1
0 , 1

∆tr
i+1
1)

using the yielded values. Then we define the error ϵi+1 as follows:

ϵi+1 = ri+1
2 − a

(
ri+1
0 ,

1

∆t
ri+1
1

)
(11)

In the correction scheme, we calibrate each predicted value as follows:

ri+1
k = ri+1

k − ckϵi+1 (12)

where (c0, · · · , c5) = (3
20 ,

251
360 , 1,

11
18 ,

1
6 ,

1
60). The problem of this method is inconsistency. The inconsis-

tency means ri+1
2 ̸= a(ri+1

0 , 1
∆tr

i+1
1) after the correction step. However, this method is efficient and

still a popular method among the field. In summary, this method works as follows:

1. Initialization: initializes r00, r
0
1, r

0
2 using given x0,v0,a0 and others as zero

Simulation in Computer Graphics / Shuhei Watanabe 9/23

Table 2: Pros and cons of each scheme

Scheme Pros Cons

Explicit Accurate Unstable
Can update with non-linear accelerations Requires more accleration computations
Simple implementation for better accuracy

Implicit Stable12 Less accurate
Requires linearization of accelerations13

Second-order Positions are accurate Velocities are not accurate
only one acceleration computation
not necessarily requires velocities

2. Prediction: performs according to Eq. (10)

3. Error computation: computes using Eq. (11)

4. Correction: calibrates using Eq. (12)

1.9 Pros and cons of explicit, implicit, second-order ODE schemes

The advantages and the disadvantages of each scheme is summarized in Table 2 First, we have to check
the ratio of time step vs computation time. Basically, implicit schemes are attractive in terms
of the stability and thus it can take larger time steps. However, at least in particle simulations, we
have to pay attention to so-called Courant number defined as follows:

C =
∥v∥∆t

L

where L is the diameter of particles. If C is larger than 1, the particle potentially bumps into each
other or walls during i∆t ∼ (i + 1)∆t. Then the simulation cannot process the contact handling and
particles go through each other or they just get out from the simulator.

2 Elastic solids

In the previous sections, we discuss how to update velocities and positions. From this section, we will
see force models, i.e. acceleration computations. In this section, we handle the force model of elastic
solids and the computation is performed by minimizing the deformation of an object. Note that the

courant number C = ∥v∥∆t
∆x is important for the elastic solids as well and it is modeled to be closed to

C ≈ 1.

2.1 Deformation and stress

Elastic solids are modeled using a set of particles and forces at each particle accounts for the resitance
to deformation. More formally, the elastic solids are divided into finite elements and the definition of
an element is as follows:

13Larger time steps do not negatively affect the performance of implicit schemes
13We can set arbitrary iteration for linear system solver, so the computation time can be dynamic.

Simulation in Computer Graphics / Shuhei Watanabe 10/23

Definition 3
Given a set of particles Xi = {xi,1, · · · ,xi,n}, the i-th element is the object which has Xi as
the vertices

For example, if n = 2, the element is a line. If n = 3, it is a triangle. If n = 4, it is a tetrahedron.
The deformation of the i-th element Ci(xi,1, · · · ,xi,n) ∈ R is measured using the deviation from

the initial element size Vi. For example, the following equations are the deformation 14 for n = 2, 3:

Ci(x1,x2) =
1

Vi
(|x1 − x2| − Vi)

Ci(x1,x2,x3) =
1

Vi

(
1

2
|(x2 − x1)× (x3 − x1)| − Vi

)
where Vi for the first equation is the initial distance between x1 and x2 and Vi for the second equation
is the initial space of the triangle composed of x1,x2,x3. Note that Vi is a constant number and C is
conventionally divided by Vi to be a non-dimensional number. Plus, since each element basically tries
to stay as close to the initial state as possible, the following statement holds:

1. If Ci = 0, the object is not deformed, so no force happens

2. If Ci > 0, the object is larger than the initial state, so each particle tries to shrink inside

3. If Ci < 0, the object is smaller than the initial state, so each particle tries to expand

Using the deformation Ci, the stress (or internal pressure) of the i-th element Si(xi,1, · · · ,xi,n) ∈ R
is formulated as follows:

Si(xi,1, · · · ,xi,n) = kiCi(xi,1, · · · ,xi,n)

where ki is the constant number representing the material stiffness. A larger ki means more stiff and
resists the deformation more. In contrast, a smaller ki means softer and do not resists the deformation
so much.

2.2 Elastic energy

Each element always resists to the deformation and this deformation can be quantified using the elastic
energy defined as follows:

Ei(xi,1, · · · ,xi,n) =
1

2
CiSiVi

=
1

2
kiC

2
i Vi

Additionally, since this energy is always non-negative and the minimization of the energy leads to the
stability of each element 15, this optimization can be performed using gradient descent. Therefore, the
force model of elastic solids is the following:

Fi,j = − ∂E

∂xi,j
= −kiViCi

∂Ci

∂xi,j

This force Fi,j for the j-th particle of the i-th element is called elastic forces. This force holds the
following properties:

1. The preservation of linear momentum:
∑n

j=1 Fi,j = 0

2. The preservation of angular momentum:
∑n

j=1 xj × dFi,j

dt = 0

In other words, elastic forces influence only the deformation, but not rotation or acceleration of the
element or the entire object. That is why the elastic force is called internal forces 16.

14Strictly speaking, this formulation is not correct. However, for the simplicity, this formulation is used in practice.
15The optimal state for each element is to be non-deformed Ei = 0.
16One example of external forces is the gravitational force.

Simulation in Computer Graphics / Shuhei Watanabe 11/23

2.3 Damping force

Damping force is caused by frictions or viscosity. Since this force slows down the velocities or reduces
the noise, it improves the stability of simulations. There are two ways to represent this force:

1. Particle forces F damp
i = −γvi: This is an external force, so it can slow down the whole

movement and stabilize the simulation, but leads to less accuracy

2. Relative damping F damp
i,j = −γ

(
(vi − vj) · ri,j

)
ri,j : This is an internal force, so it preserves

linear and angular momentum and also reduces oscillations and noise

where ri,j =
xj−xi

∥xj−xi∥

2.4 Particle masses

Each element has several particles and each particle should have some mass. Additionally, it is im-
portant to reduce the influence on the result from the discretization. For this reason, we let each
particle have some masses. In the case where all the elements are composed of three particles, since
each element has three particles, each particle in an element has the 1

3 of mass contribution from each
element. Therefore, the mass for the i-th particle is defined as follows:

mi =
∑
j

ρjSj

3

where ρj , Sj is the density and the space of the j-th element (or object) respectively. For the simplicity,
we often use the following equation as well:

mi = ρi
∑
j

Sj

3
(13)

where ρi is an initial-user-defined parameter 17. Using this mass mi, the elastic acceleration for each
particle can be computed as ai = Fi,j/mi. Note that due to the simple form, Eq. (13) is used more
often.

2.5 Collision handling: particle vs plane

Let x1
ref ,x

2
ref ,xi ∈ R3 be reference positions on the plane and the position for a particle, n be the

unit normal vector with respect to x2
ref − x1

ref , i.e. n · (x2
ref − x1

ref) = 0, vi be the velocity of the i-th
particle, Vi be the velocity of the i-th particle after the collision, x1, x2, x3 be the axes of the global
coordinate system, x′

1, x
′
2, x

′
3 be the axes of the local coordinate system, Pi be the momentum of the

i-th particle. Note that the axis x′
3 is horizontal to n and all the axes are vertical to each other.

2.5.1 The update of velocities

Since both x1
ref ,x

2
ref are on the plane, if the angle between xi − x1

ref and n is larger than or equal to
90 degree, it means the i-th paticle collides with the plane as shown in Figure 1. Therefore, it can
be trivially detected by the sign of the inner product sign(n · (xi − x1

ref))
18. Additionally, when we

consider the plane as a particle xj , the governing equation is the following:

Momentum Preservation : miVi,x′
k
−mivi,x′

k
= Px′

k
= −mjVj,x′

k
+mjvj,x′

k
(for all k = 1, 2, 3)

Coefficient of Restitution : Vi,x′
1
− Vj,x′

1
= −e(vi,x′

1
− vj,x′

1
)

Friction : Px′
k
= µPx′

3
(for k = 1, 2)

17It sounds strange to let each particle have the density, but conventionally we set the density for each particle, but
not element.

18If it is positive, no collision, else collision.

Simulation in Computer Graphics / Shuhei Watanabe 12/23

Figure 1: The visualization of the collision detection with a plane. Since the inner product between
the blue line and red line (i.e. the normal) is negative, we can know the blue point and the plane
collide.

where e(0 < e ≤ 1) is an elastic coefficient and µ(0 ≤ µ ≤ 1) is a friction coefficient. This is 9 × 9
linear system to obtain three momentums and six velocities. Note that when we consider the collision
to fixed planes, we can replace velocities with zero and mass with infinity. Such equations can be
solved explicitly and we use the closed form to obtain the new velocities. However, since the obtained
velocities do not guarantee the decay over time, this simple heuristic V·,x′

k
= µv·,x′

k
is used for the

update of V·,x′
k
for k = 1, 2 19. This update guarantees the decay ∥V·,x′

k
∥ ≤ ∥v·,x′

k
∥ 20.

2.5.2 The update of positions

When elements collide with planes, the positions are typically outside of the simulator. Therefore, we
need to consider this phenomenon when updating the position. There are basically two solutions for
this:

1. Do nothing

2. Project particles onto the plane by xi+1 = xpred
i − (n · (xi − xref))n

Note that it happens when n · (xi − xref) ≤ 0. This update works well for inelastic cases, but it does
not for elastic cases.

2.6 Visualization

When we visualize the simulated result, we take finer grids for the visualization and rough grids for
the simulation. The visualization scheme is as follows:

1. preprocessing: determine the closest element for each surface point and compute Barycentric
coordinates with respect to the corresponding element

2. simulation step: compute surface-point positions using the pre-computed coefficients of Barycen-
tric coordinates

The Barycentric coordinate for a tetrahedron is defined as follows:

xs =

4∑
k=1

αkxk

19In other words, the vertical direction to ri,j
20It is more important to satisfy this constraints.

Simulation in Computer Graphics / Shuhei Watanabe 13/23

Figure 2: The weights for each direction are preserved and the positions of new elements can be easily
estimated using the weighted sum, i.e. barycentric coordinate.

where
∑4

k=1 αk = 1 and αk (for all k = 1, 2, 3, 4) is called Barycentric coordinates of xs with respect
to xk (for all k = 1, 2, 3, 4). This linear system can be solved unless the closest element is degenerated
21 and once they are computed, they are just fixed throughout the visualization process as shown in
Figure 2.

3 Particle fluids

3.1 Smoothed Particle Hydrodynamics (SPH)

SPH is an interpolation or discretization scheme that can be used for the computation of fluid solvers
and this method itself is not a fluid simulation method. This method allows to interpolate quantities
at arbitrary positions and approximate the spatial derivatives using a finite number of samples, i.e.
adjacent particles. In the fluid simulation, we use SPH to approximate density, pressure, viscosity and
external forces. The approximation is performed using the following equation:

Qi =
∑
j

VjQjk(xi,xj) =
∑
j

mj

ρj
Qjk(xi,xj)

∇Qi =
∑
j

mj

ρj
Qj∇k(xi,xj)

∇2Qi =
∑
j

mj

ρj
Qj∇2k(xi,xj)

(14)

where Q is the quantity, which we would like to approximate and Vj , ρj ,mj are volume, density and
mass respectively and k(·, ·) is the kernel function. The typical kernel function is cubic spline defined
as follows:

Ki,j = K

(
∥xi − xj∥

R

)
= K(r) = α


(2− r)3 − 4(1− r)3 (0 ≤ r < 1)

(2− r)3 (1 ≤ r < 2)

0 (2 ≤ r)

where α is a normalization constant. Note that Ki,j = k(xi,xj) ∈ R,∇Ki,j ∈ R3. In this case, since
the upper bound of r is 2, 2R is called support and when the support is larger, it leads to the larger
number of neighbors and it affects the performance significantly. The properties of the kernel function
are the following:

1. Normalized:
∫
x′∈X k(x,x′)dx′ = 1

21If it is degenerated, we just take the second closest element.

Simulation in Computer Graphics / Shuhei Watanabe 14/23

2. Compact support: ∀x′, k(x,x′) = 0, s.t. ∥x′ − x∥ > 2R

3. Positive semi-definite: ∀n ∈ N≥1,∀a ∈ Rn,
∑n

i=1

∑n
j=1, aiajk(xi,xj) ≥ 0

4. Limit is dirac delta: limR→+0 k(x,x
′) = δ(x,x′)

5. Twice differentiable: k(x,x′) belongs to C2 class

Using this kernel function, the approximation is computed as follows:

Q(x) = (Q ∗ k)(x) =
∫
x′∈X

Q(x′)k(x,x′)dx′

∇Q(x) = ∇(Q ∗ k)(x) = (∇Q ∗ k)(x) = (Q ∗ ∇k)(x)

∆Q(x) = ∆(Q ∗ k)(x)(∆Q ∗ k)(x) = (Q ∗∆k)(x) = (∇Q ∗ ∇k)(x)

Note that the formulations can be proved using Convolution theorem F(f ∗ g) = F(f)F(g) where
F is the fourier transform and we use cross-correlation in the application as in convolutional neural
networks.

3.2 Governing equations in particle approaches

There are mainly two types of approaches in fluid simulations. One is particle approaches or Lagrangian
fluid simulation. The other is grid approaches or Eulerian fluid simulation. The Eulerian approaches
first have the static cells over the simulating space and each cell does not move, but just store the
quantities. On the other hand, the Lagrangian approaches let particles move around the space and
each particle has its own quantities. This paper focuses on the Lagrangian approaches. The governing
equations for the Lagrangian approaches are the following:

dv

dt
= g + ν∇2v −∇p

ρ ,
dx

dt
= v

where the first equation is called the Navier-Stokes equation and ν is a viscosity coefficient and g is
a gravitational acceleration unit. Note that ∇ = (∂

∂x ,
∂
∂y ,

∂
∂z) is gradient operation and ∇ · ∇ = ∆ =

∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is Laplacian. The Navier-Stokes equation has the following three terms:

1. Pressure acceleration: The resistance to the changes of density and volume.

2. Viscosity: The resistance to deformation and the force toward the average velocity of the
neighbors.

3. External forces: In simple cases, it is just a gravity.

We will discuss each term one by one.

3.2.1 Density

The explicit form for density is the following:

ρi =
∑
j

mj

ρj
ρjKi,j =

∑
j

mjKi,j

The approximation of the quality is sufferred when there are only few samples around the position of
interest. Since the following differential update gives zero when the densities around the particle is
constant, the following equation is often used:

dρi
dt

= −ρi∇ · vi = −
∑
j

mj(vi − vj) · ∇Ki,j

Note that since this formulation is the divergence of the velocities, the formulation is different from
the summation over the gradient and the left hand side is the derivative with respect to time, not
positions.

Simulation in Computer Graphics / Shuhei Watanabe 15/23

3.2.2 Pressure acceleration

For the computation of pressure acceleration, the following equation is often used since it preserves
the linear and angular momentum:

apressure
i ≃ −∇pi

ρi
= − 1

ρi
∇pi − pi∇

1

ρi

(
pi = max

(
k

(
ρi
ρ0

− 1

)
, 0

))

= −
∑
j

mj

(
pi + pj
ρiρj

)
∇Ki,j

≃ −
∑
j

mj

(
pi
ρ2i

+
pj
ρ2j

)
∇Ki,j

where ρ0 is the initial global density and k is a user-defined stiffness. Intuitively, this term accelerates
particles from high to low pressure to minimize density deviation ρi

ρ0
− 1. Note that the pressure has

to be non-negative and we apply clipping to the pressure state equation. This clipping does not affect
significantly, because when particles are further away, the pressure acceleration is not preferred.

3.2.3 Viscosity

Viscosity is represented by the divergence of the stress and the stress is proportional to velocities for
fluids. Therefore, each particle will have the acceleration towards the average velocity of neighbors. For
the viscosity computation, the following equation is often used since it can avoid the second derivative
and thus it is more robust:

ν∇2vi ≃ 2ν
∑
j

mj

ρj

(vi − vj)(xi − xj)

∥xi − xj∥2 + 0.01R2
∇Ki,j (15)

This formulation is approximated by the Taylor series approximation as follows:

v(x′) ≃ v(x) +
dv

dx
(x′ − x) +

d2v

dx2

(x′ − x)2

2
v(x′)− v(x)

x′ − x
≃ dv

dx
+

d2v

dx2

x′ − x

2

For the simplicity, we will see the derivation of the 1D version. By using the equation and the first
order derivative in Eq. (14), we obtain the following:∫

(v(x′)− v(x))

x′ − x

∂k(x, x′)

∂x
dx′ ≃

∫ x+2R

x−2R

(
dv

dx
+

d2v

dx2

x′ − x

2

)
∂k(x, x′)

∂x
dx′

=

[
−
(
dv

dx
+

d2v

dx2

x′ − x

2

)
k(x, x′)

]
︸ ︷︷ ︸

=0 (∵k(x,x+2R)=0)

=
1

2

d2v

dx2

∫ x+2R

x−2R

k(x, x′)dx′ =
1

2

d2v

dx2

where ∂k(x,x′)
∂x dx′ = −k(x, x′). Using this result, we define the coefficient as 2 in Eq. (15) 22.

22In the multidimensional cases, this coefficient seems to be not correct.

Simulation in Computer Graphics / Shuhei Watanabe 16/23

3.3 Boundary handling

By introducing the static fluid samples, we can represent the boundary as follows:

Qi =
∑
j

mj

ρj
Qjk(xi,xj)︸ ︷︷ ︸

Fluid samples

+
∑
j

mb
j

ρbj
Qb

jk(xi,x
b
j)︸ ︷︷ ︸

Boundary samples

Basically, fluid samples at boundary has high density and high pressure, so the pressure solves the
contact without explicit handling as in rigid objects.

3.4 Implementation

1. pre-setting: first defines kernel, particle mass or spacing (mi = ρ0R
3) 23, and integration

scheme.

2. Find neighbors of all particles: The neighbors are defined based on the kernel.

3. Compute density, pressure and non-pressure accelerations: Compute by the equations
discussed above.

4. Update velocities and positions: This computation relies on the integration scheme.

3.5 Sampling of particles

In the case of ideally sampled particles, the following holds:∑
j

k(xi,xj) =
ρi
mi

∇k(xi,xj) = −∇k(xj ,xi)∑
j

∇k(xi,xj) = 0

∑
j

(xi − xj)×∇k(xi,xj) = − 1

Vi
I

Note that ideally sampled means each particle is uniformly sampled across the simulated space, i.e.
Vi = Vj , ρi = ρj for arbitrary pairs (i, j). Since the properties above hold in the case of ideally
sampled particles, we often use it to validate newly created simulations. On the other hand, in the
case of erroneous sampling, i.e. particles are sampled densely or sparsely, SPH often contradicts with
real-world phenomenona.

4 Neighbor search

Since SPH requires the summation of neighbors and neighbors dynamically change, it is important to
be able to compute each neighbor efficiently. This is realized by space subdivision and it is required
to reduce the memory consumption and the computational complexity.

4.1 Space subdivision

Spatial data structures are mainly required fast query, fast construction at each simulation step
and sparsity over the simulation space. Since the computational complexity of the construction and
the access are O(C) and O(1) where C is the number of grids, the space is usually subdivided into
uniform grids.

23The ratio of ∆x and R governs the number of neighbors.

Simulation in Computer Graphics / Shuhei Watanabe 17/23

Algorithm 1 Index sort

1: function Index Sort
2: Initialize counter, location
3: for i = 0, . . . , n− 1 do ▷ Iteration over each particle
4: j := the index of cell that the i-th particle belongs to
5: counter[j]++

6: for i = 0, . . . , C − 2 do ▷ Iteration over each cell
7: counter[i+ 1] = counter[i] + counter[i+ 1]

8: for i = 0, 1, . . . , n− 1 do
9: j := the index of cell that the i-th particle belongs to

10: counter[j]−−, location[counter[j]] = i

11: Insert 0 in the head of counter
12: return location, counter

4.1.1 neighbor search using uniform grids

In the case of D-dimensional space, each cell refers to 3D cells around each cell. Therefore, smaller
cell size can reduce the computation of each cell, but it leads to the larger number of cells to store.
On the other hand, the larger cell size can reduce the memory size, but it leads to more computation
for each cell. Note that the cell size is typically equal to kernel support. One variant of neighbor
search is verlet lists and this method updates the neighbor candidates once every certain
step based on the assumption that each particle does not move further than its size in one step. The
neighbors are chosen from the candidate pool at each step. The major issue of this method is the
memory consumption due to the storage of the candidate pool.

4.2 Sorting algorithm

In the space subdivision, we would like to have the data structure to know which cell each particle
belongs to and which particles each cell has.

4.2.1 Index sort

The most näıve algorithm is index sorting. The algorithm is given in Algorithm 1 and location[counter[i]]
∼ location[counter[i+1]−1] are the indices of particles in the i-th cell. The iteration over each particle
can be computed in parallel and since we do not have to allocate memory explicitly as in hashing, we
can reduce memory allocation. The major problem of this method is lower cache-hit ratio 24. This
is because while each particle in the same cell has closer memory address to each other, but not nec-
essarily to all the neighbors. In order to increase the cache-hit ratio, it is important to have spatial
locality, which is the state where most neighbors locate in close memory.

4.2.2 Z-curve index

Z-curve index improves the cache-hit ratio by sorting cell indeices in a way that each neighbor cell
locates closer. These indices can also be computed efficiently. Additionally, since each neighbor cell is
closer in terms of memory location and the temporal coherence holds, only small portion of particles
has to be sorted in each time step.

24During computation, computer stores elements recently used in cache and cache can be reused quickly. In this sense,
the more we use cached data, the more we can reduce computational time.

Simulation in Computer Graphics / Shuhei Watanabe 18/23

4.3 Hashing

4.3.1 Spatial hashing

Index sort requires the memory allocation for each grid cell. However, if the simulation space is huge,
this is not infeasible. Therefore, we use hashing and represent simulation space sparsely. Hash function
h maps the cell index c to a number and we store hash for all the cells including at least one particle in
a list. Hashing allows us to deal with infinite domains. Major problems of hashing are hash collisions
and reduced cache-hit ratio. Although hash collision does not have a bad influence on the result,
hash collision slows down the searching procedure. Additionally, the cache-hit ratio decreases, because
the hash table is sparsely filled.

4.3.2 Compact hashing

This method uses larger hash table compared to spatial hashing to reduce hash collisions and
particles are sorted with respect to z-curve every certain step. Therefore, when traversing the list, the
cache-hit ratio improves. Additionally, if there is no hash collision in a cell, we need to look at only
the adjacent cells for the particles in such a cell. For this reason, hash-collision flag speeds up the
computation. Other than that, since it updates, but not rebuilds, list of used cells 25, it can employ
temporal coherence. Note that if particles change their cells, the cell indices will be estimated.

On the other hand, since each neighbor in the list of used cells are not necessarily neighbors for
each cell, spatial locality is not improved.

5 Rigid bodies

5.1 Rigid bodies vs elastic solid

In the previous section, we handle the elastic solids, which is deformable. In this section, we handle the
rigid bodies, which is undeformable. While both elastic solid and rigid bodies are composed of multiple
particles, each particle in rigid bodies is tied by non-stretchable strings and that in elastic solids is tied
by springs. Therefore, the state variables of rigid bodies are position, velocity, orientation, angular
momentum and mass distribution of the object. Note that elastic solids do not have the notation of
orientation that is the rotation matrix mapping from the local coordinate to the global coordinate.

5.2 Particle representation

Each rigid body is represented by the following variables:

1. Reference position x̄g = [0, 0, 0]⊤ : Center of mass of the body

2. Relative position of each particle x̄i : Position of the i-th particle in the body

3. Absolute position of each particle xi = xg + Rx̄i: Global position of the i-th particle and
it is represented by the translation and the rotation of the relative vector

where xg =
∑

i mixi

M is the gravitational point, M is the total mass of the body and R is the rotation
matrix or orientation of the object. Note that x̄ refers to the relative vector from the center of mass
throughout this section as shown in Figure 3.

25Spatial hashing does not use a list of used cells, but just uses mapping.

Simulation in Computer Graphics / Shuhei Watanabe 19/23

Figure 3: The visualization of the rigid body. Each position of the particles are represented using the
position of the gravitational point xg and the fixed relative position x̄i and the orientation R.

5.3 The quantities of rigid bodies

5.3.1 The linear acceleration

The linear acceleration of the center of mass can be computed from the mass of the rigid body and
from the sum of all forces acting at arbitrary rigid body positions as follows:

F =
∑
i

mi
d2xi

dt2
=

d2
∑

i mixi

dt2
= M

d2xg

dt2 , a =
F

M
(16)

From the equation, the force of the object is deduced to the force at the centeral point.

5.3.2 The orientation and the angular velocity

The orientation of a body can be computed using the rotation matrix R satisfying R⊤ = R−1,detR = 1
as follows:

xi(t) = xg(t) +R(t)x̄i

dxi(t)

dt
=

dxg(t)

dt
+

dR(t)

dt
x̄i +R(t)

dx̄i

dt

=
dxg(t)

dt︸ ︷︷ ︸
velocity

+
dR(t)

dt
x̄i︸ ︷︷ ︸

angular velocity

(17)

The angular velocity of a body shows the direction of the axis of rotation and often refers to ω.
Therefore, the displacement of a given position x is the following:

dx

dt
= [ω2x3 − ω3x2 ω3x1 − ω1x3 ω1x2 − ω2x1]

⊤ (cross product)

=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

x

= ω̃x

where ·̃ is the cross product. Between the angular velocity and rotation, the following holds:

dR(t)

dt
R(t)⊤ = ω̃ =⇒ dR(t)

dt
= ω̃R(t)(

∵ dRR⊤

dt
= 0 =

dR

dt
R⊤ +R

(
dR

dt

)⊤

=
dR

dt
R⊤ +

(
dR

dt
R⊤
)⊤

,
dR

dt
R⊤ =

 0 a b
−a 0 c
−b −c 0

 = ω̃

) (18)

Simulation in Computer Graphics / Shuhei Watanabe 20/23

Therefore, the velocity of each particle can be reformulated as follows:

dxi(t)

dt
=

dxg(t)

dt
+

dR(t)

dt
x̄i

=
dxg(t)

dt
+ ω̃(t)R(t)x̄i

=
dxg(t)

dt
+ ω̃(t)(xi(t)− xg(t))

5.3.3 The angular momentum

The angular momentum is defined as the product of mass distribution and the angular velocity as
follows:

Li = ri ×mivi = ri ×mi(ω × ri)

L =
∑
i

Li =
∑
i

ri ×mi(ω × ri)

= −
∑
i

mir̃ir̃i︸ ︷︷ ︸
Inertia Tensor: I

ω

= Iω

(19)

where ri = xi − xg. Inertia tensor represents how hard to rotate the object. Since ri(t) = R(t)x̄i,

when we define Ĩ as the cross product tensor of x̄i, I = R(t)ĨR(t)⊤ and it can be precomputed.

5.3.4 The torque

The torque of the body is defined as the time derivative of the angular momentum and the product of
the force and the length from the central point:

τ =
dL

dt
=
∑
i

ri × Fi (20)

5.4 Simulation step

First, we compute fixed quantities and then we update the following at each iteration:

1. Force, Torque (per particle): Use Eqs. (16), (20)
τ =

∑
i ri × Fi,F =

∑
i Fi

2. Position, Linear velocity Rotation matrix, Angular momentum, Inertia tensor, An-
gular velocity (per body): Use Eqs. (18), (19), (20)
xg = xg + vg∆t,vg = vg +

F
M , R = R+ ω̃R∆t,L = L+ τ∆t, I = R(t)ĨR(t)⊤,ω = I−1L

3. Position, Velocity (per particle): Use Eq. (17)
ri = xi − xg = Rx̄i,vi = (vg +

F
M∆t) + ω̃ri

where all the updates use explicit Euler in this case, but we can use another FDE method. Note
that since the error accumulates during simulations and R(t) is likely to not maintain the or-
thonormality, orientation R(t) has to be reorthonormalized and it is performed by Gram-Schmidt
orthonormalization.

Simulation in Computer Graphics / Shuhei Watanabe 21/23

Figure 4: The conceptual visualization of the bounding volume hierarchies. The collision detection is
performed from the first layer and if the shallower layer detects collisions, detections will be performed
on the next layer. When we detect collisions in any leaf, it means the object intersects with another
object. By starting from the rough detection, we can compute efficiently.

6 Bounding volume hierarchies

In simulations, collision detections are one of the most important topics and the bounding volume
hierarchies are often used. Since collision detections can be an expensive process, efficient inter-
section test and memory efficiency are required. In addition, quicker generation update and the
tight-fitting of the bounding box are also essential.

6.1 Basic concept

The bounding box encapsulates each element or object. Since the bounding box is the outer shell
of elements or objects, we do not have to apply contact handling unless the bounding boxes overlap.
Such overlaps can be roughly estimated using rough bounding boxes, so we first use large bounding
boxes. If we detect intersects between objects, we make the bounding boxes smaller and compute
collision detections further. Such procedure can realize the efficient overlap test and the tight
approximation of the object. As shown in Figure 4, since the first layer can detect only rough
collisions, we propagate through layers and if we detect collision in the final layer, i.e. the minimum
possible elements or primitives, we process the contact handling. To efficiently perform the collision
detection, the design of bounding volume hierarchies requires balanced tree, minimal redundancy
(to have as small the number of layers that have primitives as possible) and tight-fitting bounding
volumes.

6.2 Bounding volumes

The basic bounding volumes are the following:

1. sphere: Each element has the center position and radius. The construction can be performed
from AABB and the diagonal is the diameter. We can detect collision by the distance between
two centers.

2. axis-aligned bounding box (AABB): Each element has the center position and the distances
from each surface (3 for 3D). We can detect collision by the distance between two centers along

Simulation in Computer Graphics / Shuhei Watanabe 22/23

Table 3: The properties of each bounding volume. D is the dimension of the simulation space and T
is translation and R is rotation.

Sphere AABB k-DOP OBB

Variables 2 D + 1 k k + 1
Invariance T & R T T T & R
Collision detection 1 D k Many26

Construction - - A fixed set of normals Max eigenvalue’s direction

Figure 5: The visualization of the space subdivision by uniform grids. Each object belongs to the cells,
which the bounding box touches.

each axis.

3. k-th discrete-orientation polytope (k-DOP): Each element has the k/2 min-max intervals
and we first fix the k/2-th normal directions. The collision detection is performed by checking
the overlap of min-max for all the directions (k/2 directions). All the axes are fixed across all
the objects.

4. oriented bounding box (OBB): More free version of AABB. It checks along each face normal
of two objects and all cross products of edges of those two. Since it checks along more directions,
it requires more computation, but it can achieve rotation invariance. Each direction is selected
for each object individually.

k-DOP can improve the approximation quality by increasing k, but it leads to expensive computation.

7 Space subdivision

Bounding volume hierarchy divides objects into smaller components and each component has its own
bounding box. On the other hand, space subdivision divides space into cells and allocates each element
to cells. Then, collision detections are computed by checking the elements in the same cell. Space
subdivision is efficient for the larger number of objects. The implementation is the following:

1. Hash all vertices according to their cell

2. Hash all tetrahedrons (i.e. their vertices) according to the cells touched by their bounding box

26The face normals of two bounding boxes and the cross product of two edges.

Simulation in Computer Graphics / Shuhei Watanabe 23/23

3. Perform collision detection between vertices and tetrahedrons. If vertices are in the tetrahedrons,
it is a collision or a self-collision in the case of their own vertices. This test can be easily performed
using Barycentric coordinates.

Note that larger cell size leads to more primitives in a cell and each object belongs to more cells when
the cell size is smaller. In the previous research, it has been reported that the optimal cell size
should be equal to the bounding box size. The hyperparameters of this method are cell size, hash
table size and a hash function. Each of them significantly affects the performance. For example, a
larger hash table is important to reduce the hash collisions, but the positive effect diminishes for too
large hash tables. To subdivide the space, the following methods are used:

1. Uniform grid: simple and efficient for the larger number of objects. Performance depends on
the number of primitives, but not on the number of objects.

2. K-d tree: Divide space in the same way that decision tree does and each leaf includes the similar
number of vertices. Collision query performs all the elements belonging to the partitions which
overlap with the object of interest.

3. BSP tree: Generalized K-d tree and divides by linear lines to keep the number of nodes and
the depth as small as possible.

Note that since the trees can distribute the number of primitives in each cell, there are only few cells
with smaller number of particles and that is why they are more efficient than the uniform grid.

