
Reinforcement Learning / Shuhei Watanabe 1/27

Reinforcement Learning

Shuhei Watanabe

March 31, 2021

1 Introduction

Definition 1

1. Time steps: t ∈ N

2. States: s ∈ S where S is a finite set of states

3. Actions: a ∈ A where A is a finite set of actions

4. Rewards: r ∈ R where R is a finite set of scalar rewards

5. Policies: For deterministic policies π(s) = a and for stochastic policies π(a|s) = p(a|s)

6. Value function: vπ(st) = Eπ[Gt|st] measures the value of policy with a given state

7. Action-value function: qπ(st, at) = Eπ[Gt|st, at] measures the value of policy given a
pair of state and action

In Reinforcement learning (RL), the goal is to maximize the expected value of cumulative sum of
a received reward. This is supported by Reward Hypothesis. Plus, we often introduce discounted
rewards to reduce the future rewards which are more uncertain 1. The difference is the following:

Gt = rt+1 + rt+2 + rt+3 + · · · =
∞∑
k=0

rt+k+1

Gt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
k=0

γkrt+k+1

where γ ∈ [0, 1] is called discount rate. The main interest in RL is to find policies which balance
so-called the exploration-exploitation trade-off 2 and maximize the cumulative rewards. Addi-
tionally, there is a connection between value function and action-value function as follows:

Stochastic : vπ(s) = Eπ[qπ(s, a)]

Deterministic : vπ(s) = qπ(s, π(s))

For the computation scheme of value and action-value function, the following Bellman equation* is
used:

vπ(s) =
∑
a

π(a|s)
∑
s′,r

(r + γvπ(s
′))p(s′, r|s, a)

qπ(s, a) =
∑
s′,r

(r + γ
∑
a′

π(a′|s′)qπ(s′, a′))p(s′, r|s, a)

The optimality of policies are defined as follows:

1This is especially required when the time limit is infinity and we do not need it if the task is episodic.
2Exploration is to take the actions, which agents do not have much experience. On the other hand, exploitation is to

use previous knowledge to choose better options.

Reinforcement Learning / Shuhei Watanabe 2/27

Definition 2
A policy π⋆ is optimal iff:

∀π, vπ⋆
(s) ≥ vπ(s)

The policy π⋆ satisfies the following equations:

vπ⋆
(s) = max

a

∑
s′,r

(r + γvπ⋆
(s′))p(s′, r|s, a)

qπ⋆
(s, a) =

∑
s′,r

(r + γmax
a′

qπ⋆
(s′, a′))p(s′, r|s, a)

2 Markov decision process (MDP)

In MDP, we compute the transition probability p(s′, r|s, a) (P : S × R × S × A → [0, 1]) of the next
state and the corresoponding reward with given a current state s and an action a. To compute the
transition probability, we assume the following Markov Property:

Assumption 1
A state-reward pair (s′, r) has the Markov property iff:

p(s′, r|st, at) = p(s′, r|st, at, · · · , s0, a0)

In other words, the transition probability p only depends on the current state and action, but not
on more previous data. One concrete example is the following:

• Imagine a house cleaning robot. It can have three charge levels: high, low and none. At every
point in time, the robot can decide to recharge or to explore unless it has no battery. When
exploring, the charge level can reduce with probability ρ. Exploring is preferable to recharging,
however it has to avoid running out of battery.

The formulation of this problem is as follows:

S = {high, low, none}
A = {explore, recharge}
R = {+1,−1,−100}

The transition probability is as follows:

p(s′, r|s, a) =

 1 ({high,−1, low, recharge}, {high,−1,high, recharge}, {none, 0,none, ·})
ρ ({low,+1,high, explore}, {none,−100, low, explore})
1− ρ ({high,+1,high, explore}, {low,+1, low, explore})

MDP assumes that it can fully understand the current state of the environment. However,
in the real setting, it is not necessarily true. Therefore, partially observable MDP, which is one
variant of MDP introduces the observations ω ∈ Ω and the probability p(s|ω) of state under a given
observation.

3 Multi-armed Bandits (MAB)

3.1 Preliminaries

The problem setting of MAB is the situation where you have several options (e.g. K slot machines).
Ideally, we would like to keep on choosing the best option. The reward distribution with a given option

Reinforcement Learning / Shuhei Watanabe 3/27

(or action) is described as p(r|a). Note that general MAB does not have the concept of state.
Tha main goal of MAB is also to maximize the cumulative reward. Since there is at least one ideal
option among the options, we rewrite the objective function to the following:

E
[T∑
t=1

(q(a⋆)− q(at))

]
This metric is called total regret and the minimization of the total regret leads to the maximization
of the cumulative rewards.

3.2 ϵ–greedy

This method literally takes the best option greedily with a certain probability 1 − ϵ. To obtain the
best option, we have to estimate the action-value function as follows:

qt(a) =
1

Nt(a)

T∑
t=1

rt1(at = a)

where Nt(a) is the number of times a was taken in t time steps and α is called step size or learning
rate. For more aggressive knowledge exploitation, we can decay ϵ as ϵt+1 = (1− t/T)ϵinit. Using this
cumulative qt(a), the current best option can be computed as at = argmaxaqt(a). Practically, qt(a)
can be computed in the following manner:

qn+1 =
(n− 1)qn + rn

n
= qn +

rn − qn
n

qn+1 = qn + α(rn − qn)
(1)

where qn = qt(a), rn = rt s.t. Nt(a) = n − 1, Nt−1(a) = n − 2. When we use Eq. (1), we can update
qt(a) by the time complexity of O(1). The first equation is the correct way to compute qt(a). However,
in practice, especially when the probability p(r|a) dynamically changes, the second equation works
well, because when n goes to inifinity, 1/n vanishes in the former equation and not in the latter. That
is why the latter formulation can exploit more recent observations and it handles real-world problems
better. Note that if we set qinit higher, it promotes the exploration and it is effective for non-stationary
problems 3. However, it is unstable in the beginning, because

1. qt(a) reduces when the action a is chosen and the least change is the best action a⋆

2. The best action a⋆ is likely to be chosen and this leads to the decrease of regret

3. However, this also leads to the decrease of qt(a⋆)

4. Therefore, another action will be taken until qt(a) becomes suffciently low compared to qt(a⋆)
and the regret is unstable in the beginning.

3.3 Softmax action selection

Instead of choosing as ϵ–greedy does, we can pick actions proportional to their value. This is called
softmax action selection and modeled as follows:

p(at = a) =
exp(qt(a)/τ)∑

a′∈A exp(qt(a′)/τ)

where τ is a control parameter. As τ grows, it approaches random selection. On the other hand, as τ
becomes smaller, it becomes more aggressive sampling. The advantage of this method is the robustness
in the parallel computational situation and the disadvantage is that this model is not objective 4.

3The problems which do not converge.
4Thompson sampling is not mentioned in the class. However, Thompson sampling can handle in a more objective

manner.

Reinforcement Learning / Shuhei Watanabe 4/27

Algorithm 1 ϵ-greedy algorithm

ϵ, qinit ▷ a control parameter and the initial value of qt(a)
1: function ϵ-Greedy
2: Initialization: q1(a) = qinit for all a
3: for t = 1, · · · , T do
4: r = random-number(0, 1)
5: if r ≤ ϵ then
6: Choose one option randomly
7: else
8: Choose the best option at = argmaxaqt(a)

9: Update qt(a) as in Eq (1)

3.4 UCB

In ϵ–greedy, the best option will be taken based on previous experience. However, some observations
are probably underestimated and we should take this possibility into account. One solution is to use
Upper Confidence Bound (UCB) of qt(a). Since this method uses UCB, it is called the optimism in
the face of uncertainty principle. The queried action will be decided based on the following score
5:

at = argmaxa

(
qt(a)︸ ︷︷ ︸

Greedy Term

+c

√
log t

Nt(a)︸ ︷︷ ︸
Optimism Term

)

Basically, if a given option is not taken so much, this score promotes to take the option optimistically.

3.5 Contextual Bandits

Bandit strategies for solving the exploration-exploitation issue for RL are suboptimal, because they
do not take the state into account and they ignore the sequence of actions to be made. To address
the issue, the contextual bandits has been introduced. The contextual bandits has the concept of
state s. In this problem, there are unknown distribution p(s) (context distribution) and p(r|s, a).
The difference is with or without s. In each time step t, the environment generates st (e.g. User
preferences) and the agent selects action at. If actions are allowed to affect the next state st+1 as well
as the immediate reward, then this is a full reinforcement learning problem.

4 Policy iteration and value iteration

Policy and value iteration find optimal policies π⋆ based on the Bellman equation. Since the optimal
solution can be decomposed into subproblems, dynamic programming, i.e. tabular format policies, can
be applied. Each iteration is composed as follows:

1. Policy iteration: Interleave policy evaluation and improvement

2. Value iteration: Apply the Bellman optimality equation iteratively

Note that since it is typical to have the curse of dimensionality, we often substitute it with sample-based
methods mentioned later.

5This formulation can be derived easily if we know the definitions of consistency of policies and Höffding’s Inequality.
However, I will skip this, because the professor did not talk about them.

Reinforcement Learning / Shuhei Watanabe 5/27

Algorithm 2 Policy Iteration (the case of a deterministic policy)

θ > 0 ▷ The parameter controling accuracy of estimation
1: function Policy Iteration
2: while true do
3: while ∆ ≥ θ do ▷ Policy Evaluation (evaluate a value function for given π)
4: ∆ = 0
5: for s ∈ S do
6: v = vπ(s)
7: vπ(s) =

∑
s′,r(r + γvπ(s

′))p(s′, r|s, π(s)) ▷ Bellman expected equation8

8: ∆ = max(∆, |v − vπ(s)|)
9: same policy = true

10: for s ∈ S do ▷ Policy Improvement (improve a policy for given value function V)
11: a = π(s)
12: π(s) = argmaxa′

∑
s′,r(r + γvπ(s

′))p(s′, r|s, a′) ▷ Bellman optimality equation
13: if a ̸= π(s) then
14: same policy = false

15: if same policy then
16: return π ≃ π⋆

4.1 Policy iteration

Policy iteration is the algorithm, which combines policy evaluation and policy improvement. Note
that evaluation step is called prediction and improvement step is called control. In other words, the
prediction is the prediction of the value function and the control is the control of actions or a policy
or to update the action-value function. Note that prediction requires either a model or a policy
and control does not require either of them. This algorithm relies on the following theorem:

Theorem 1
Let π and π′ be any pair of deterministic policies. If, ∀s ∈ S,

qπ(s, π
′(s)) ≥ vπ(s),

then the policy π′ must be as good as, or better than, π, i.e. ∀s ∈ S:

vπ′(s) ≥ vπ(s)

Based on this theorem, we can compare policies and improve policies iteratively. In the algorithm,
we first evaluate the value function for each state given a policy π 6. Then, we check if the new
policy is successfully improved 7. The procedure will continue until we get the policy π ≃ π⋆.

4.2 Value iteration

Since policy iteration requires policy evaluations at each improvement step, it often takes substantial
amount of time. In fact, this iterative evaluation is not necessarily required 9. Therefore, value iteration

6This can be represented as linear system and solved by the inverse matrix.
7We check the optimality in the greedy manner.
8Only the first iteration is random policy and we take greedy policy from the second iteration in the case of a

deterministic policy.
9Because the optimal value is unique, but the optimal policy is not unique. For example, when ∀s, s′ ∈ S, v⋆(s) =

v⋆(s′) holds, an arbitrary policy is the optimal policy.

Reinforcement Learning / Shuhei Watanabe 6/27

Algorithm 3 Value Iteration

θ > 0 ▷ The parameter controling accuracy of estimation
1: function Value Iteration
2: while ∆ ≥ θ do
3: ∆ = 0
4: for s ∈ S do
5: v = vπ(s)
6: vπ(s) = maxa

∑
s′,r(r + γvπ(s

′))p(s′, r|s, a) ▷ Bellman optimality equation
7: ∆ = max(∆, |v − vπ(s)|)
8: return π s.t. π(s) = argmaxa

∑
s′,r(r + γvπ(s

′))p(s′, r|s, a) ▷ deterministic policy

omits this evaluation and evaluates the value function in the greedy manner once. Then, it returns
the deterministic argmax policy for each state. The complexity of each iteration is O(|S|2|A|).

5 Monte-Carlo reinforcement learning

Monte-Carlo (MC) based learning is model-free, i.e. it does not require an MDP model and observes
the the transitions directly from the real environment ; therefore lower-biased method. On the other
hand, since MC yields high variance, MC usually requires more samples to converge. In this section,
we handle the following:

1. MC prediction: Take the average of returns over each generated episode

2. On-policy MC control: Control a given policy using the greedy policy on action value function

3. Off-policy MC control: Control a given policy using a policy called behavior policy and the
policy of interest called target policy 10.

Note that on-policy methods use the same policy for both update of value function and
generating episodes while off-policy separates the policies. In the case of MC methods, on-policy
methods use the current target policy for both and off-policy methods use the current target policy for
update and behavior policy for generating episodes. Since the same policy yields similar experience,
off-policy methods can reuse experience generated from old policies and thus they are more sample-
efficient 11. On the other hand, off-policy methods is less stable. Recall that episodes are generated
as follows:

1. Set an initial state

2. Decide the next action given the current state and a policy

3. Observe the next state and reward directly from the real environment

4. Repeat the procedure until we reach the termination or run out the budget

5.1 General setting of MC

We use MC sampling when we cannot examine all possible pairs of a state and an action. Since each
episode, i.e. a sequence of pairs of a state, an action and a reward {{(st, at, rt)}Ti

t=0}Ni=1 , is generated
from the environment directly, we do not need any MDP models which are required in value or policy

10Learning its value function is the target of the learning process, so we call it target policy. Target policy is typically
deterministic policy while behavior policy is stochastic.

11In other words, the training convergence requires less samples.

Reinforcement Learning / Shuhei Watanabe 7/27

iteration. Note that an agent learns value function from the average of sampled complete episodes 12

and since it uses the actual data and MC can cover only a fraction of choices 13, the training result is
likely to have low bias and high variance. The formal formulation of the MC method is the following:

Definition 3
Given a policy π, the objective is to estimate the value function

vπ(st) = Eπ[Gt|st]

where Gt =
∑T−t

τ=1 γ
τ−1rt+τ . The MC method replaces the value function with the empirical

value function as follows:
vπ(s) = E{{(st,at,rt)}

Ti
t=0}N

i=1∼π
Gi,t

Note that the update of the value function vπ(s) can be performed by O(1) using the following:

vπ(st) = vπ(st) +
1

N(st)
(Gi,t − vπ(st))

where N(st) is the state-visitation counter. Instead of N(st), we can also use the fixed step size or
learning rate α to deal with the infinite episodes or the non-stationary problems 14 as follows:

vπ(st) = vπ(st) + α(Gi,t − vπ(st))

Note that when we use a fixed learning rate, we do not yield the convergence.

5.2 Monte-Carlo prediction

The First-visit MC prediction is shown in Algorithm 4. There are two ways to update value function
in MC prediction:

1. First-visit MC: Estimate the value function vπ(s) as the average of the returns at the first
visits to s in each episode.

2. Every-visit MC: Estimate the value function vπ(s) as the average of the returns at all the
visits to s in each episode.

The former ignores trajectories from s except the first visit in each episode.

5.3 Monte-Carlo control

5.3.1 On-policy MC control

When we perform the policy iteration using value function, we need an MDP model p(s′, r|s, a).
However, we do not have the model in MC methods, so we generate transitions from a pair of a
state and an action using action-value function qπ(s, a) instead of an MDP model. The policy
improvement is guaranteed for any ϵ-greedy policy when we set the next policy to the ϵ-greedy policy
with respect to the current action-value function. The proof is given below.

12We do not need bootstrapping for MC methods. In this context, bootstrapping is to approximate the target value
functions based on existing value functions.

13The number of possible trajectories from one state is massive and that is why depending on the trajectories they
take, the performance changes significantly.

14This is the case for real-world problems. The environments keep changing.

Reinforcement Learning / Shuhei Watanabe 8/27

Algorithm 4 First-visit MC prediction

π ▷ A policy to be evaluated
1: function First Visit MC Prediction
2: Initialize vπ(s) ∈ R
3: while The budget is left do
4: G = 0, Generate an episode following π : {(st, at, rt)}Tt=0

5: visit[s] = # of visits to s in the episode for all s ∈ S
6: for t = T − 1, T − 2, · · · , 0 do
7: G = γG+ rt+1, visit[st] = visit[st]− 1
8: if visit[st] = 0 then ▷ In every-visit MC, we do not need this condition.
9: vπ(st) = vπ(st) +

1
N(st)

(G− vπ(st))

10: visit[st] = true

[Proof]
First, the next ϵ-greedy policy is as follows:

π′(a|s) =

{
ϵ

|A| + 1− ϵ (if a = argmaxa′∈A qπ(s, a
′))

ϵ
|A| (Otherwise)

Under this policy, the policy improvement guarantees the improvement.

qπ(s, π
′(s)) =

∑
a∈A

π′(a|s)qπ(s, a)

=
ϵ

|A|
∑
a∈A

qπ(s, a) + (1− ϵ)max
a∈A

qπ(s, a)

≥ ϵ

|A|
∑
a∈A

qπ(s, a) + (1− ϵ)
∑
a∈A

π(a|s)− ϵ
|A|

1− ϵ︸ ︷︷ ︸
1 or 0

qπ(s, a)

=
ϵ

|A|
∑
a∈A

qπ(s, a)−
ϵ

|A|
∑
a∈A

qπ(s, a) +
∑
a∈A

π(a|s)qπ(s, a)

= vπ(s)

where the right and left hand sides are equal if and only if π(a|s) = π′(a|s). It implies the new policy
π′ improves from the previous policy π based on Theorem 1.

5.3.2 Off-policy MC control

In on-policy MC control, the action value function is learned from episodes generated based on the
target policy π(a|s). On the other hand, off-policy MC control learns the target policy π from episodes
generated from the behavior policy b. Since the behavior policy is different from the target policy
and can be stochastic, off-policy methods can promote more exploration. This policy b can be an
arbitrary policy such as a random policy or a greedy policy. One example of the off-policy methods
using MC is importance sampling. The main idea of the importance sampling is to transfer the
knowledge obtained from the behavior policy b into the target policy π. The probability of subsequent
trajectory {(sτ , aτ)}Tτ=t under a given policy π and a state st is the following:

p(at, st+1, at+1, · · · , sT |st, π) =
T−1∏
τ=t

π(aτ |sτ)p(sτ+1|sτ , aτ)

The importance relative sampling ratio is defined using the probabilities above as follows:

Reinforcement Learning / Shuhei Watanabe 9/27

Algorithm 5 On-policy first-visit MC control

ϵ > 0 ▷ Hyperparameter
1: function On-policy First Visit MC Control
2: Initialize qπ(s, a) ∈ R
3: while The budget is left do
4: G = 0, Generate an episode following π : {(st, at, rt)}Tt=0

5: visit[s, a] = # of visits to (s, a) in the episode for all (s, a) ∈ S ×A
6: for t = T − 1, T − 2, · · · , 0 do
7: G = γG+ rt+1, visit[st, at] = visit[st, at]− 1
8: if visit[st, at] = 0 then ▷ In every-visit MC, we do not need this condition.
9: qπ(st, at) = qπ(st, at) +

1
N(st,at)

(G− qπ(st, at))

10: a⋆ = argmaxaqπ(st, a)
11: visit[st, at] = true
12: for all a ∈ A(st) do
13:

π(a|st) =

{
1− ϵ+ ϵ

|A| (if a = a⋆)
ϵ

|A| (Otherwise)

Definition 4

ρt:T−1 =

∏T−1
τ=t π(aτ |sτ)p(sτ+1|sτ , aτ)∏T−1
τ=t b(aτ |sτ)p(sτ+1|sτ , aτ)

=

∏T−1
τ=t π(aτ |sτ)∏T−1
τ=t b(aτ |sτ)

Since we take the ratio, the MDP terms are canceled out and we do not need any models for
this method as well. The goal is to estimate the expected return given a state and it can be transformed
using the relative ratio as follows:

vπ(st) = Eπ[Gt|st] = Eb[ρt:T−1Gt|st]

Since it uses the probabilities from a different policy, it is likely to include both larger variance and
larger bias and this is the major problem of this method. In practice, we use the following weighted
average to reduce variance:

vπ(s) =

∑
τ∈T (s) ρt:τGt∑
τ∈T (s) ρt:τ

where T (s) is a set of the time steps when we visit the state s from t to T − 1.

6 Temporanl difference learning

In MC methods, we use complete episodes for each update of value function. On the other hand,
temporal difference (TD) methods use an immediate reward from the enviroment for each update.

6.1 Temporal difference prediction

First, let’s take the update of value iteration in the temporal difference method:

vπ(st) = vπ(st) + α
(
rt+1 + γvπ(st+1)− vπ(st)

)

Reinforcement Learning / Shuhei Watanabe 10/27

Algorithm 6 Off-policy MC control (importance sampling)

q(s, a) ∈ R,W (s, a) = 0, π(s) = argmaxa qπ(s, a) ▷ objective function
1: function off-policy importance sampling MC
2: while The budget is left do
3: G = 0, Generate an episode following the behavior policy b : {(st, at, rt)}Tt=0

4: G = 0, ρ = 1
5: for t = T − 1, T − 2, · · · , 0 do
6: G = γG+ rt+1

7: W (st, at) = W (st, at) + ρ
8: qπ(st, at) = qπ(st, at) +

ρ
W (st,at)

(G− qπ(st, at)) ▷ Averaging

9: π(st) = argmaxa qπ(st, a)
10: if at ̸= π(st) then break ▷ Reduce bias by avoiding larger or smaller weights

11: ρ = ρ 1
b(at|st) ▷ Since π is a greedy policy, π(·|a) = 1.

Table 1: The comparison of TD and MC.

- Temporal difference (TD) Monte carlo (MC)

Update every step at the end of each episode
Final outcome not required15 required
Bias higher lower
Variance lower higher
Bootstrapping Yes No
Solution maximum likelihood of observed MDP16 maximum likelihood of observations

On the other hand, the update in the Monte-Carlo methods is the following:

vπ(st) = vπ(st) + α
(
Gt − vπ(st)

)
where Gt =

∑T
τ=t+1 γ

τ−t−1rτ . As seen in the equations, the temporal difference only uses the next
reward and the value function of the next state. That is why it is called temporal difference. Note
that δt = rt+1 + γvπ(st+1) − vπ(st) is called TD error and rt+1 + γvπ(st+1) is called TD target.
Basically, the error in MC can be derived using TD error as follows:

Gt − vπ(st) =

T∑
τ=t+1

γτ−t−1rτ − vπ(st)

=

T∑
τ=t+1

γτ−t−1δτ

As seen in the equation, the cumulated TD error is equivalent to the MC error. The differences are
listed in Table 1. In some cases, TD rather than MC yields the correct value function as seen in Figure
1.

16It means it can deal with infinite horizon tasks
16If this Markov model were exactly correct, the estimate of the value function would be exactly correct. This is called

certainiy equivalence.

Reinforcement Learning / Shuhei Watanabe 11/27

Figure 1: When there are only two kind of trajectoies t1 : s0, s1, s3, s4 and t2 : s0, s2, s3, s5 and we
yield t1 for i ∼ i + 2 iteration and t2 for i + 3 iteration for all i = 0, 4, · · · . While MC yields biased
result, TD yields the correct answer due to the effect of bootstrapping at s3.

Algorithm 7 TD(0) prediction

π, α ∈ (0, 1] ▷ The policy to be evaluated and hyperparameter
1: function TD(0) prediction
2: while The budget is left do
3: Sample s
4: while The episode is not finished do
5: a ∼ π(a|s) and observe r, s′

6: vπ(s) = vπ(s) + α
(
r + γvπ(s

′)− vπ(s)
)
, s = s′

6.2 Temporal difference control

6.2.1 State-action-reward-state-action (SARSA)

At each iteration, given a state st, we take an action at chosen in the previous iteration. Then we
observe the corresoponding reward rt+1 and the following state st+1. Finally, we choose a future
action at+1 based on the current action-value function qπ(s, a) using soft policy (e.g. ϵ-greedy) 17. The
action-value function will be updated by the following:

qπ(st, at) = qπ(st, at) + α
(
rt+1 + γqπ(st+1, at+1)− qπ(st, at)

)
Since both policy improvement and episode generation use the same policy, we call it on-policy.

6.2.2 Q-learning

At each iteration, given a state st, we take an action at based on qπ(s, a) using soft policy (e.g. ϵ-
greedy). Then we observe the corresoponding reward rt and the following state st+1. The action-value
function will be updated by the following:

qπ(st, at) = qπ(st, at) + α
(
rt+1 + γmax

a
qπ(st+1, a)− qπ(st, at)

)
Since target policy is greedy algorithm and bahavior policy is a soft policy, we call it off-policy.

6.2.3 Expected SARSA

This method takes the expected value of action-value function at each iteration.

qπ(st, at) = qπ(st, at) + α
(
rt+1 + γEa∼π(a|st+1)[qπ(st+1, a)]− qπ(st, at)

)
17Soft policy is a policy which takes all possible actions with a certain probability.

Reinforcement Learning / Shuhei Watanabe 12/27

Since we do not use an actual policy for target policy, it is called off-policy. If the target policy π is
deterministic and greedy, it is equivalent to Q-learning.

6.2.4 Double Q-learning

In most control algorithms, value functions are created by the maximization of value function. There-
fore, we keep taking the maximum of maximum 18 and this leads to the so-called overestimation.
To alleviate this problem, double Q-learning has been introduced. This algorithm improves two Q-
value functions and updates one of them with the probability of 0.5 and the other with the other 0.5
probability as follows:

q1(st, at) = q1(st, at) + α

(
rt+1 + γq2(st+1, argmaxaq1(st+1, a))− q1(st, at)

)
q2(st, at) = q2(st, at) + α

(
rt+1 + γq1(st+1, argmaxaq2(st+1, a))− q2(st, at)

)
The major problems of Q-learning are to choose both the next action and action-value function greedily.
Due to the operations, action-value function includes noise from the same policy and this noise is
correlated to the policy. On the other hand, when we use a different policy to evaluate an action-
value function from the other policy, since the noise cummulated in two action-value functions are
decorrelated, it solves the overestimation issue. Furthermore, both action-value functions show the
similar output in the end.

7 Model-based reinforcement learning and its combination

Up to now, the main focus is to approximate value functions. However, it is sometimes easier to
estimate the underlying MDP model, e.g. solving maze, directly. Since model-based methods do not
require the observation through the real environment and they can simulate using an MDP model, it
is more sample-efficient. On the other hand, the learning can be biased depending on the accuracy
of a given model, so the combination of both model-free and model-based methods called Dyna
has been introduced. This method first learns from the real environment, then updates action-value
function using experiences from previous observations, i.e. a model-based simulation. As another
major example, we will discuss Monte-Carlo tree search (MCTS). This model constructs a tree
containing previously visited pairs of a state and an action. It first chooses a promising path and then
expands and randomly simulates an episode from the end node of the path. The action-value function
is updated using this trajectory.

7.1 Model learning

First, the differences among various learnings are the following:

1. Learning a model p(s′, r|s, a): Data-efficient and can apply supervised learning, but hard to
extract an optimal policy

2. Learning a value function vπ(s), qπ(s, a) : Less data-efficient, but easier to extract an optimal
policy

3. Learning a policy π: Data-inefficient, but can estimate an optimal policy directly

Since model-based RL does not use the environment directly, we call it indirect methods and call
model-free RL direct methods. Indirect methods introduce additional bias and it is sometimes
hard to model properly, but they are more data-efficient in most cases. The scheme of model
learning is the following:

18Since the target policy updates the action-value function by at+1 = maxa qπ(st+1, argmaxaqπ(st+1, a)) and the
existing action-value function are already biased, it is likely to cumulate additional noise.

Reinforcement Learning / Shuhei Watanabe 13/27

Algorithm 8 Random-sample one-step tabular Q-planning

1: function Q Planning
2: while The budget is left do
3: s ∼ S, a ∼ A at random
4: s′, r ∼ p(s′, r|s, a)

5: qπ(s, a) = qπ(s, a) + α

(
r + γmaxa′ qπ(s

′, a′)− qπ(s, a)

)

Algorithm 9 Tabular Dyna-Q

Initialize qπ(s, a) and model(s, a) for all (s, a) ∈ S ×A
1: function Dyna Q
2: while The budget is left do
3: pick s from the enviroment ▷ Learning
4: a = ϵ−greedy(s, qπ)
5: s′, r ∼ p(s′, r|s, a) ▷ Sample from the real environment

6: qπ(s, a) = qπ(s, a) + α

(
r + γmaxa′ qπ(s

′, a′)− qπ(s, a)

)
7: model(s, a) = s′, r ▷ In this case, the model is deterministic
8: for i = 1, · · · , n do ▷ Planning
9: pick (s, a) from previous observations randomly

10: s′, r = model(s, a)

11: qπ(s, a) = qπ(s, a) + α

(
r + γmaxa′ qπ(s

′, a′)− qπ(s, a)

)

1. Generate simulated experiences 19 based on an estimated model

2. Compute value function by backup operations applied to simulated experience

3. Extract a policy (planning)

In state-space planning, planning is viewed primarily as a search of an optimal policy or a path to a goal
through the state space. In other words, planning is to extract a policy using simulated experience
generated by a model and learning is to extract a policy using real experiences from the environment.
Note that the final policy will be the optimal policy in the given model, i.e. a suboptimal policy in
the given enviroment. This is because models can be incorrect due to the limited number of samples
or dynamic environment. Therefore, it is a good choice to model the state difference rather than
the transition to a global state, because there can be a local similarities with respect to the state
difference. Needless to say, models can be unreliable especially at the region where the agents do not
explore much, called distribution mismatch.

7.2 Dyna

Dyna is a method combining the benefits of both direct methods, which are less biased, and indirect
methods, which are more data-efficient. Roughly speaking, Dyna first learns from the real environment,
then iterates a given indirect method to update action-value function using simulated experiences.

One problem of Dyna is distribution mismatch. To address the problem, Dyna-Q+ has been
introduced. In Dyna-Q+, it modifies the internal reward function as follows:

r + κ
√
τ

19The next state and the corresponding reward or it can be a sequence of states and rewards. The next state and the
corresponding reward can be given as a form of a probability distribution. We call such a model distribution model
and we call a deterministic model sample model.

Reinforcement Learning / Shuhei Watanabe 14/27

where κ is a coefficient to control the bonus and τ is the number of time steps in which a certain
transition has not been visited. The second term promotes the exploration.

Another option is prioritized sweeping. This method puts a higher priority on the pair (s, a)
with higher absolute temporal difference r + γmaxa′ qπ(s

′, a′) − qπ(s, a). The major change in the
algorithm is to choose a pair of (s, a) with higher absolute TD error as a priority in the line 9 in
Algorithm 9.

7.3 Simulation-based search (Monte-Carlo tree search)

Simulation-based search is a sample-based planning and it simulates experience from the current state
with a given model, then applies model-free RL to simulated episodes. One of the variants is Monte-
Carlo tree search (MCTS). This model is composed of the following procedures:

1. Selection: Start at the state of interest and going to a leaf following the tree policy (e.g.
ϵ-greedy)

2. Expansion: Expand the tree by one or multiple child nodes reached from the selected leaf

3. Simulation: Simulate an episode following the rollout policy (e.g. random policy)

4. Backup: Update the action-values for all nodes visited in the tree (called MC control)

Note that while we expand the tree by one or more child nodes, we add only one child node from each
node during a simulated episode and back-propagate the result in the end as in the MC control. If we
replace the MC control with SARSA, it will be TD search.

8 Function approximation

In the cases where the state space and the action space is tremendously huge, the tabular value
function does not work. One solution for this is to find a parameterized function taking a state and
an action as inputs. However, the estimation is usually hard due to the issues not in supervised
learning such as non-stationarity, i.e. dynamic environments, bootstrapping, and delayed targets, i.e.
the reward for the corresponding action and state will come later. Note that we mainly focus on the
representation of value functions vπ(·), qπ(·, ·), but not policies or models here. One method for the
function approximation is the following:

wt+1 = wt −
α

2

∂

∂w
[vπ(st)− v̂π(st;wt)]

2

= wt + α[vπ(st)− v̂π(st;wt)]
∂v̂π(st;wt)

∂w

This metric is called mean squeared value error. Since vπ(st) is not available in most cases, we
often use the following two solutions:

1. Gradient MC: wt+1 = wt + α[Gt − v̂π(st;wt)]
∂v̂π(st;wt)

∂w

2. Semi-gradient TD(0): wt+1 = wt + α[rt+1 + γv̂π(st+1;wt)− v̂π(st;wt)]
∂v̂π(st;wt)

∂w

The gradient MC uses the cumulated reward as a state value function. On the other hand, the semi-
gradient TD(0) uses the temporal difference as a value error. Since the value error relies on the
predictions of the given parameterized model, but not targets, this is not true gradient and it is called
semi-gradient. Note that since TD(0) uses v̂π(st+1;wt) in the value error function and the accuracy
relies heavily on weight vector wt, semi-gradient TD(0) can be biased.

Reinforcement Learning / Shuhei Watanabe 15/27

8.1 Linear methods

Linear method is to approximate functions using linear combination of feature vector as follows:

v̂π(st;wt) = w⊤
t x(st)

∂v̂π(st;wt)

∂wt
= x(st)

where x = (x1(s), x2(s), · · · , xd(s))
⊤ and xi(s) is a mapping of a given state. The linear methods for

both gradient MC and semi-gradient TD(0) are guaranteed to converge.

8.1.1 The convergence analysis of semi-gradient TD(0)

We give a proof of the convergence of semi-gradient TD(0). The update of weight vector in semi-
gradient TD(0) is the following:

wt+1 = wt + α[rt+1 + γw⊤
t x(st+1)−w⊤

t x(st)︸ ︷︷ ︸
Scalar value

]x(st)

= wt + αx(st)[rt+1 + γx(st+1)
⊤wt − x(st)

⊤wt]

= wt − α[x(st)x(st)
⊤ − γx(st)x(st+1)

⊤]wt + αrt+1x(st)

If the system converges, we yield wt = wt+1, therefore,

E[w⋆|w⋆] = w⋆ + α(b−Aw⋆) = w⋆

Aw⋆ = b =⇒ w⋆ = A−1b

where E[x(st)x(st)⊤ − γx(st)x(st+1)
⊤] = A and E[rt+1x(st)] = b. The transition of wt can be

reformulated as follows:
wt+1 = (I − αA)wt + αb

where I is an identity matrix. If |αA| ̸= 0 holds, there exists c such that:

wt+1 − c = (I − αA)(wt − c)

where c = α−1A−1(αb) = A−1b. This transition satisfies the following equation:

wt − c = (I − αA)t(w0 − c)

If this equation converges, limt→∞(I − αA)t = 0 must be fulfilled 20. The matrix which satisfies this
property is called convergent and if a given matrix is convergent, the following holds [1]:

Theorem 2
A given matrix M is convergent iff:

ρ(M) < 1

where ρ(M) := max{∥λ∥ |λ ∈ Λ(M)} is the spectral radius, i.e. the maximum absolute eigen-
value, of a given matrix M .

From this theorem, if ρ(I −αA) < 1, the weight vector converges. Let V ΛV −1 be the eigendecom-
position of the matrix A. Then we obtain the following result:

I − αA = I − αV ΛV −1

= V IV −1︸ ︷︷ ︸
=I

−αV ΛV −1

= V (I − αΛ)V −1

(2)

20The convergence requires (I−αA)t ≃ (I−αA)t+1 for a sufficiently large t. For this reason, (I−αA)t(I−I+αA) =
(I − αA)tαA ≃ 0 holds. Since |A| ̸= 0, (I − αA)t ≃ 0.

Reinforcement Learning / Shuhei Watanabe 16/27

Therefore, ρ(I −αA) = ∥1−αλi∥ < 1, i.e. 0 < λi <
2
α , must be fullfilled for all the eigenvalues. Since

α is an arbitrary positive number, if A is positive definite, the system converges. Next, we will prove
that A is positive definite.

A = E[x(st)(x(st)− γx(st+1))
⊤]

=
∑
s

p(s)
∑
a

π(a|s)
∑
s′,r

p(r, s′|s, a)x(s)(x(s)− γx(s′))⊤

=
∑
s

p(s)
∑
s′

x(s)(x(s)− γx(s′))⊤
∑
a

π(a|s)
∑
r

p(r, s′|s, a)

=
∑
s

p(s)
∑
s′

x(s)(x(s)− γx(s′))⊤p(s′|s)

=
∑
s

p(s)x(s)

(
x(s)− γ

∑
s′

p(s′|s)x(s′)
)⊤

= [x(s1) · · · x(s|S|)]︸ ︷︷ ︸
=X⊤

diag(p(s1) · · · p(s|S|))

X − γ

 p(s1|s1) · · · p(s|S||s1)
...

. . .
...

p(s1|s|S|) · · · p(s|S||s|S|)

X

= X⊤p(I − γP)X

where p(s) is a stationary distribution, i.e. the state distribution after a sufficiently long time of
simulation and |S| is the size of state space. Since p (∵ ∀i, p(si) > 0) is positive definite 21, we have
to prove that I − γP is positive definite. Let the eigendecomposition of P be P = V ΛV −1. Then we
obtain the following in the same way as in Eq (2):

I − γP = I − γV ΛV −1

= V (I − γΛ)V −1

Therefore, the eigenvalues of I − γP are 1 − γλi where λi is the eigenvalues of P and 0 < γ < 1.
Additionally, the following fact is known as Gershgorin circle theorem:

Theorem 3
Given a probability matrix P , ∀j, ∃i s.t. ∥λj − Pi,i∥ ≤ 1− Pi,i

Therefore, λj < 1 for all j and 1 − γλj > 0, so A is positive definite and semi-gradient TD(0)
is stable 22.

8.1.2 Least squares TD

While least squares TD requires quadratic runtime for each update, it is more data-efficient. This
method directly estimates the following:

Ât+1 =

t∑
τ=1

xτ (xτ − γxτ+1)
⊤ + ϵI

b̂t+1 =

t∑
τ=1

rτ+1xτ

21If matrix M is positive definite, X⊤MX is also positive definite. Additionally, if a diagonal matrix D is positive
definite, DM is positive definite if and only if M is positive definite.

22This holds only for TD(0) using linear function and does not hold for TD(0) using non-linear mapping. However,
we can make use of the linear combination of non-linear basis.

Reinforcement Learning / Shuhei Watanabe 17/27

Algorithm 10 Least squares TD

Â−1 = ϵ−1I, b̂ = 0,x = x(s) ▷ Initialization
1: function Least squares TD
2: while The budget is left do
3: while The episode is not finished do
4: a ∼ π(a|s), s′, r ∼ p(s′, r|s, a),x′ = x(s′)

5: v = (Â−1)⊤(x− γx′)

6: Â−1 = Â−1(I − xv⊤

1+v⊤x
)

7: b̂ = b̂+ rx,w = Â−1b̂
8: s = s′,x = x′

Note that we can divide by time step size later and the algorithm shown in Algorithm 10 uses the
following Woodbury formula:

(A+ uv⊤)−1 = A−1 − A−1uv⊤A−1

1 + v⊤A−1u

8.2 Coarse coding

Coarse coding is to divide a state space in a set of areas and assigns a feature xi(s) for a state in each
area. For example, we can divide a state space into a set of circles. If the state is inside a circle, then
the corresponding feature has the value 1 and otherwise the feature is 0. In other words, the mapping
x(s) in this case is computed as follows:

x(s) = [1[s ∈ C1],1[s ∈ C2], · · · ,1[s ∈ Cd]]

where Ci is the i-th circle. If we train at one point, then the parameters of all circles intersecting this
state will be affected. Thus, the approximate value function will be affected at all points within the
union of the circles. Features with large receptive fields give broad generalization, but might also limit
the learned function to a coarse approximation. On the other hand, narrower receptive fields require
more data or samples to approximate the mapping well. Note that if we have sufficient data points,
we can train neural networks to construct feature space and then we do not need the coarse coding.

8.3 Memory-based function approximation

Memory-based method is a non-parametric method formulated as follows:

v̂π(s|D) =
∑
s′∈D

k(s, s′)g(s′)

where k(·, ·) is a kernel function and g(s′) is typically the cumulated reward of the state.

8.4 On-policy control with function approximation

By substituting a value function with an action-value function, we can apply semi-gradient method to
SARSA as well.

wt+1 = wt + α[rt+1 + γq̂π(st+1, at+1;wt)− q̂π(st, at;wt)]
∂q̂π(st, at;wt)

∂w

The only difference between SARSA and semi-gradient SARSA is that the normal SARSA updates
the tabular action-value function while semi-gradient SARSA updates the weight vector.

Reinforcement Learning / Shuhei Watanabe 18/27

9 Off-policy learning with function approximation

The main purpose of the off-policy learning is to maintain exploration and we discuss the off-policy
learning using function approximation in this section.

9.1 Difficulty of off-policy learning with function approximation

In reinforcement learning, the following three elements often lead to stability issues:

1. Function approximation: Use parameterized value functions instead of tabulars

2. Bootstrapping: Use approximated values to construct value functions such as TD methods

3. Off-policy learning: use behavior policy to maintain exploration instead of using target policy
to learn its value functions

We can avoid stability issues when we only use two of them. However, when we combine those three,
we typically face to stability issues, i.e. divergent values, and we call those three Deadly Triad. In
fact, semi-gradient off-policy TD(0) yields divergence of weights in the case of Baird’s counterexample
even though it only requires linear function approximation. Note that the update of the weight vector
in off-policy semi-gradient TD(0) is perfomed by the following:

wt+1 = wt + αρtδt
∂v̂(st;wt)

∂w

where ρt is the importance ratio π(at|st)
b(at|st) and δt is TD(0) rt+1 + γv̂(st+1;wt)− v̂(st;wt).

9.2 Gradient TD methods

One solution for the instability in semi-gradient TD methods is to use gradient methods, because
gradient method yields the convergence guarantee. To introduce the gradient TD methods, we first
introduce Bellman error.

Definition 5
Bellman error is defined as follows:

δ̄w(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)(r + γv̂(s′;w))− v̂(s;w)

= Eπ[r + γv̂(s′;w)]− v̂(s;w)

= Bπ(s, v̂(·;w))− v̂(s;w)

The Bellman error is clearly the expectation of TD error. However, the Bellman error does not
lie in the representable space by v̂(s;w) 23, the following projected Bellman error realizes the
optimization of the Bellman error.

23When the policy π(a|s) is not a random policy, the Bellman error is a weighted sum of the parameterized value
function and this weight is considered to be parameterized byw, so it is a non-linear mapping and it cannot be represented
by v(·;w) anymore.

Reinforcement Learning / Shuhei Watanabe 19/27

Definition 6
Suppose vw

.
= v(·;w) ∈ Vw , Bπ,w

.
= Bπ(vw) ∈ V and vw, Bπ,w ∈ R|S|, then the projected

Bellman error is defined as:

∥Π(Bπ,w − vw)∥2p(s) = ∥Πδ̄w∥2p(s)

where ∥v∥2p(s) =
∑|S|

s=1 p(s)v
2
s and projection matrix satisfies Πv

.
= vw where w = argminw∥v−

vw∥2p(s).

Note that Bπ,w cannot be fully represented by vw, so V ∩Vw = ∅ 24. Additionally, orthogonal pro-
jections of the objective value function onto the representable function byw is Π = X(X⊤PX)−1X⊤P
where X ∈ R|S|×d is a feature matrix and the stationary distribution of behavior policy P =
diag[p(s1), · · · , p(s|S|)]. p(si) becomes larger when we visit the state si more. In other words, pre-
dictions for the states which are visited more have to be more precise. Note that there are various
possible error metrics for this optimization and we obtain different weights depending on error metrics
such as TDE, PBE, BE, VE. The projected Bellman error can be transformed as follows:

∥Πδ̄w∥2p(s) = (Πδ̄w)⊤PΠδ̄w

= δ̄⊤wP⊤X(X⊤PX)−1X⊤PX(X⊤PX)−1X⊤P δ̄w

= (X⊤P δ̄w)⊤(X⊤PX)−1X⊤P δ̄w

The projected Bellman error lies in the representable space and it can be optimized via the gradient
descent. Therefore, the gradient with respect to w is the following:

∂∥Πδ̄w∥2p(s)
∂w

= 2

(
∂X⊤P δ̄w

∂w

)⊤

(X⊤PX)−1X⊤P δ̄w

= 2Eb[ρt(γxt+1 − xt)x
⊤
t]︸ ︷︷ ︸

Rd×d

(Eb[xtx
⊤
t])

−1︸ ︷︷ ︸
Rd×d

Eb[ρtδtxt]︸ ︷︷ ︸
Rd×1

(3)

where each expectation is taken over the stationary distribution of the behavior policy and we use the
importance sampling δ̄w = Eπ[Bπ,w − vw] = Eb[ρ(Bπ,w − vw)] and the following part considers the
target change:

∂δ̄w
∂w

=
∂Bπ,w

∂w︸ ︷︷ ︸
Target gradient

− ∂vw

∂w︸ ︷︷ ︸
semi-gradient

The second term of this equation complements the lack in the semi-gradient and thus each update
enables the projected Bellman error to approach zero. For this reason, we call this method a gradient
method. In order to save memory and computation, we usually estimate the product of the last
second term in Eq. (3) directly as follows:

v ≃ (Eb[xtx
⊤
t])

−1Eb[ρtδtxt]

v = v + βρt(δt − v⊤xt)xt

where β is a control parameter. Note that the estimation of the expected values are performed via MC
sampling. This method and its variants are called gradient TD methods and they are typically more
stable than semi-gradient TD methods.

24When d < |S|, the rank of Vw = wX is smaller than V = w∞X∞, so Π projects higher rank matrix to lower rank
matrix.

Reinforcement Learning / Shuhei Watanabe 20/27

Algorithm 11 Neural fitted-Q iteration

1: function Neural fitted-Q iteration
2: Initialize replay memory M ▷ Unlimited size
3: for i = 0, 1, . . . do
4: Generate an episode following ϵ-greedy : {(st, at, rt)}Tt=0 ▷ q̂(sT+1, ·; ·) = 0
5: Initialize weights of network and store transitions (st, at, st+1, rt) in memory M
6: while Budget is left do

7: L(w) = 1
|M|

∑|M|
i=1 (ri + γmaxa′ q̂(s′i, a

′;w)− q̂(si, ai;w))2

8: Loss Backward

Algorithm 12 DQN

1: function DQN
2: Initialize weights of network and replay memory M to size M
3: for i = 0, 1, . . . do
4: for t = 1, . . . , T do
5: Select at using ϵ-greedy on q̂(·, ·;w)
6: Store transition (st, at, st+1, rt) in M and remove the oldest one if |M| > M
7: Average over mini batch of transitions randomly sampled from replay memory

8: L(w) = E(s,a,s′,r)∼M

[
(r + γmaxa′ q̂(s′, a′;wold)− q̂(s, a;w))2

]
9: Loss Backward ▷ Update the weight w of the Q-network

10: wold = w

9.3 Deep Q-learning

9.3.1 Neural fitted-Q iteration

Neural fitted-Q iteration (NFQ) [8] is the first Q-learning using neural networks. This method is a
model-free off-policy RL algorithm that works on continuous state and discrete action spaces. This
algorithm stores all the experience as a memory and uses all of them during each training. Since this
method also uses bootstrapped action-value function, this is also a semi-gradient method.

9.3.2 DQN (deep Q-networks)

DQN [7] is the extension of NFQ and it also uses experience replay. The experiences from the past
reduces correlations, i.e. the positive bias of certain action values, because the current policy and the
past policy are not identical. Additionally, the samples from the past memory prevent catastrophic
forget 25. The main difference of DQN from NFQ is that while NFQ initializes Q-network each iteration
and the TD error is computed using only one network, DQN uses only one network throughout the
training and uses the fixed weights from the previous iterations for the computation of gradients. We
call the fixed network in DQN target network q̂(·, ·;wold) and update its weights every certain step.
Since the target network provides the stationary target, the optimization becomes easier and stable.
The update of the weights in the target network is performed by either of the following:

1. hard update: update target network every certain steps

2. slow update: slowly update weights every step by wold = (1− τ)wold + τw

25NFQ uses full-batch and DQN uses mini-batch. Furthermore, DQN limits the maximum memory size.

Reinforcement Learning / Shuhei Watanabe 21/27

Algorithm 13 n-step TD for prediction

1: function n-step TD
2: while The budget is left do
3: for t = 0, 1, . . . , T + n− 1 do
4: if t < T then
5: at ∼ π(a|st), st+1, rt+1 ∼ p(s′, r|st, at)
6: if t ≥ n− 1 then ▷ ∀t > T, vπ(st) = 0, rt = 0
7: Gt−n+1:t+1 = vπ(st+1) +

∑n
i=1 γ

i−1rt−n+i

8: vπ(st−n+1) = vπ(st−n+1) + α(Gt−n+1:t+1 − vπ(st−n+1))

9: return vπ

Algorithm 14 Off-policy n-step SARSA for control

1: function Off-policy n-step TD
2: while The budget is left do
3: a0 ∼ b(a|s0)
4: for t = 0, 1, . . . , T + n− 1 do
5: if t < T then
6: st+1, rt+1 ∼ p(s′, r|st, at), at+1 ∼ b(a|st+1)

7: if t ≥ n− 1 then ▷ ∀t > T, vπ(st) = 0, rt = 0

8: ρt−n+2:t+1 =
∏n+1

i=2
π(at−n+i|st−n+i)
b(at−n+i|st−n+i)

9: Gt−n+1:t+1 = qπ(st+1) +
∑n

i=1 γ
i−1rt−n+i

10: qπ(st−n+1) = qπ(st−n+1) + αρt−n+2:t+1(Gt−n+1:t+1 − qπ(st−n+1))

11: return vπ

10 n-step bootstrapping and eligibility trace

n-step bootstrapping and the eligibility trace are the methods to generalize the TD and MC.

10.1 n-step TD

The target of n-step bootstrapping is defined as follows:

Gt:t+n = γnvπ(st+n) +
n∑

i=1

γi−1rt+i

The case of n = 1 is equivalent to TD and that of n = ∞ is equivalent to MC. This technique can be
expanded to control and one example is the n-step SARSA as follows:

qt+n(st, at) = qt+n−1(st, at) + α(Gt:t+n − qt+n−1(st, at))

Since action-value function is updated n steps after from the first visit and the action values
until t + n − 1 step are available, we use them for the update. The algorithm of off-policy SARSA
is shown in Algorithm 14. Note that if we take a non-greedy policy for the target policy π, we have
to make sure at = argmaxaqπ(st, a) at each update. Additionally, it is typically hard to apply n-
step TD to Q-learning since the subtrajectory are not sampled from the target policy. For
this reason, we often use importance sampling for off-policy learning and it usually does not exhibit
good performance because of both high bias and high variance. The major issue of n-step TD is the
trade-off between variance and bias. Larger n leads to lower bias and higher variance.

Reinforcement Learning / Shuhei Watanabe 22/27

10.2 Forward-view TD(λ) (offline λ-return algorithm)

To balance the trade-off between bias and variance, we can take the average of different n-step TD.
TD(λ) or λ-return takes the weighted average of different n-step TD as follows:

Gλ
t = (1− λ)

T−t−1∑
n=1

λn−1Gt:t+n + λT−t−1Gt

where T is the length of each episode and (1−λ)
∑T−t−1

n=1 λn−1+λT−t−1 = 1 and 0 ≤ λ ≤ 1. This cumu-
lated reward is called λ-return and λ = 0, 1 correspond to TD(0) and MC methods, respectively. Since
n-step TD allows relatively immediate update compared to MC and more reliable target compared to
TD, n-step TD is efficient. The update of value function is made according to the following:

Function approximation : wt+1 = wt + α(Gλ
t − v̂(st;wt))

∂v̂(st;wt)

∂w

Others : vπ(st) = vπ(st) + α(Gλ
t − v(st))

This target reward Gλ
t can be reformulated as the weighted sum of TDs from different time steps and

we show this now. In other words, we prove that Gλ
t =

∑∞
n=0 λ

nδt+n+1. First, the following holds:

(1− λ)

∞∑
n=1

λn−1
n∑

i=1

rt+i =

∞∑
n=1

λn−1rt+n

(
∵

∞∑
n=1

λn−1
n∑

i=1

rt+i =

∞∑
i=1

rt+i

∞∑
n=i

λn−1

)
(4)

(1− λ)

∞∑
n=1

λn−1v(st+n) = v(st) +

∞∑
n=1

λn−1(v(st+n)− v(st+n−1)) (5)

For the simplicity, we ignore γ first.

v(st) = (1− λ)E

[∞∑
n=1

λn−1Gt:t+n

]
= (1− λ)E

[∞∑
n=1

λn−1

(n∑
i=1

rt+i + v(st+i)

)]

= E

[∞∑
n=1

λn−1

(
rt+n + v(st+n)− v(st+n−1)

)
+v(st)

]
(∵ Eqs. (4), (5))

= E

[∞∑
n=1

λn−1δt+n + v(st)

]

By replacing v(st+n), rt+n with γnv(st+n), γ
n−1rt+n, we can trivially show the discounted version of

the formulation. Using the result, the update is performed as follows:

Function approximation : wt+1 = wt + α

∞∑
n=1

(λγ)n−1δt+n
∂v̂(st;wt)

∂w

Others : vπ(st) = vπ(st) + α

∞∑
n=1

(λγ)n−1δt+n

Since this update requires the future rewards, we have to compute the value function from com-
pleted episodes and this computation is performed in offline26 ; therefore, this method is called
offline λ-return or forward-view TD(λ). In the same vein, offline λ-return can be applied to SARSA
as follows:

qπ(st) = qπ(st) + α

∞∑
n=1

(λγ)n−1δt+n

26As shown in Algorithm 14, the update for the time step t will happen at time step t + n − 1 and we have to wait
until this time step in the forward-view. In this case, the complete episode has the length of n.

Reinforcement Learning / Shuhei Watanabe 23/27

Algorithm 15 Backward TD(λ)

1: function Backward TD(λ)
2: while The budget is left do
3: z−1 = 0
4: for t = 0, 1, . . . , T do
5: at ∼ π(a|st), st+1, rt+1 ∼ p(s′, r|st, at)
6: zt = γλzt−1 +

∂v̂(st;wt)
∂w

7: δt = rt+1 + γv̂(st+1;wt)− v̂(st;wt)
8: wt+1 = wt + αδtzt

9: return vπ

Basically, the reward from far future is less important compared to that from near future and the
TDs using far future are exponetially decayed by the factor of γλ. In this sense, it does not make
much difference when we cut off the far future and it can yield faster convergence. Such method is
called truncated TD (TTD) and the update is the following:

Gλ
t:t+n = (1− λ)

n∑
i=1

λi−1Gt:t+n + λnGt:t+n = v̂(st;wt) +

n∑
i=1

(λγ)i−1δt+i

wt+n = wt+n−1 + α(Gλ
t:t+n − v̂(st;wt+n−1))

∂v̂(st;wt+n−1)

∂w

10.3 Backward-view TD(λ)

To compute the value function in an online manner, we use backward-view and then we do not have
to wait for the end. This method combines heuristics of Frequency and recency to consider the
contribution to the prior states’ value. This is realized by a λ-decay. The update of this method is as
follows:

zt = γλzt−1︸ ︷︷ ︸
Recency

+
∂v̂(st;wt)

∂w︸ ︷︷ ︸
Frequency

wt+1 = wt + αδtzt

where λ is called trace-decay parameter and the case of λ = 0 is equivalent to semi-gradient method.
Backward-view TD(λ) can also be applied to SARSA in the same vein as Algorithm 15.

11 Policy gradient

Up to the last section, we focus on the estimation of the value functions and approximate the policy
π(a|s) implicitly. The policy gradient aims to approximate the policy explicitly by parameterizing
π(a|s;wπ) and maximizing the performance by the gradient ascent. The major advantages of the
policy gradient are the handling of large or continuous action spaces. However, since it usually
requires MC sampling, the result is likely to cause high variance and requires much more time for
the convergence.

11.1 The formulation

The formal formulation of the policy gradient in the continuous settings is the following:

π⋆ ∈ argmaxπP(wπ)

P(wπ) =
∑
s∈S

p(s)vπ(s)
(6)

Reinforcement Learning / Shuhei Watanabe 24/27

where P is the performance measure of the policy, wπ is the learnable parameters for the policy
π(a|s;wπ) and p(s) is the stationary distribution of each state. Note that we take the expectation over
the possible initial states in the case of episodic problems, i.e. the problems that have the termination
for each episode. The following Policy gradient theorem holds given the performance measure P.

Theorem 4
∀π(a|s,wπ) ∈ C1, the policy gradient is:

∂P
∂wπ

=
∑
s

p(s)
∑
a

qπ(s, a)
∂π(a|s;wπ)

∂wπ

=
∑
s

p(s)
∑
a

qπ(s, a)π(a|s;wπ)
∂

∂wπ
log π(a|s;wπ)

= Eπ

[
qπ(s, a)

∂

∂wπ
log π(a|s;wπ)

] (7)

where vπ(s) =
∑

a π(a|s;wπ)qπ(s, a)

Note that we take the following form to make the transformation to the expectation form easier:

∂π(a|s;wπ)

∂wπ
= π(a|s;wπ)

∂

∂wπ
log π(a|s;wπ)︸ ︷︷ ︸

score function

(8)

We assume that the expectation value over the policy π is defined as follows:

Eπ[f] =
∑
s,a

p(s)π(a|s)f(s, a) (9)

11.2 REINFORCE

REINFORCE is an MC policy gradient method. This method computes the unbiased action-
value function qπ by MC sampling:

qπ(st, at) = Gt = rt+1 + γrt+2 + · · · γT−t−1rT (10)

and uses the function for the gradient computation:

Eπ

[
qπ(s, a)

∂

∂wπ
log π(a|s;wπ)

]
= α

T−1∑
t=0

γtGt
∂

∂wπ
log π(at|st;wπ) (11)

where α is a learning rate or a constant factor which scale the right hand side. By taking each term
iteratively, we update the weights as shown in shown in Algorithm 16. Since it uses MC sampling, it
typically suffers from high variance and slow convergence. Therefore, some works have developed the
variance reduction methods. One major example is the variance reduction with baselines. Since∑

a π(a|s) = 1, the derivatives of the summation of the policy over the action space is always zero.
Using this fact, the following is used for the variance reduction while maintaining the unbiased value
function:

∂P
∂wπ

= Eπ

[
(qπ(s, a)− f(s))

∂

∂wπ
log π(a|s,wπ)

]
(
∵
∑
s

∑
a

p(s)f(s)π(a|s,wπ)
∂

∂wπ
log π(a|s,wπ)︸ ︷︷ ︸

∂π(a|s,wπ)
∂wπ

=
∑
s

p(s)f(s)
∂
∑

a π(a|s,wπ)

∂wπ
= 0

)
(12)

Reinforcement Learning / Shuhei Watanabe 25/27

Algorithm 16 REINFORCE: Monte-Carlo policy-gradient control

απ, αv ▷ Learning rate
1: function REINFORCE
2: while The budget is left do
3: G = 0, Generate an episode following π(a|s;wπ) : {(st, at, rt)}Tt=0

4: for t = 0, 1, . . . , T − 1 do
5: G =

∑T
τ=t+1 γ

τ−t−1rτ
6: if Use baseline then
7: δ = G− v̂(st,wv) ▷ Variance reduction

8: wv = wv + αvδ
∂v̂(st,wv)

∂wv

9: wπ = wπ + αγtδ ∂
∂wπ

log π(at|st;wπ)
10: else
11: wπ = wπ + αγtG ∂

∂wπ
log π(at|st;wπ)

Algorithm 17 One-step actor-critic control

απ, αv ▷ Learning rate
1: function One-step actor-critic
2: while The budget is left do
3: for t = 0, 1, . . . , T − 1 do
4: at ∼ π(a|st,wπ), st+1, rt+1 ∼ p(s′, r|st, at)
5: δt = rt+1 + γv̂(st+1,wv)− v̂(st,wv)

6: wv = wv + αvδt
∂v̂(st,wv)

∂wv
,wπ = wπ + απγ

tδt
∂

∂wπ
log π(at|st,wπ)

Note that the baseline reduces the variance through the reduction of the scale of each value function.
In other words, the variance will be relaxed by introducing the scale reduction. The typical selection
of the baseline is parameterized value function v̂(s;wv) and we optimize this value function jointly
with the policy by gradient MC. We replace G with G− v̂(st;wv) in the update of the weights of the
policy.

11.3 Actor-critic methods

While the baseline reduces the variance of policy gradient, it still includes high variance and tends
to converge slowly. To address this issue, the actor-critic methods have been introduced [5] and they
replace MC with TD. They jointly learn policy (actor) and value function (critic) and these are
computed based on TD as shown in Algorithm 17. Note that the actor-critic methods can be applied
to n-step methods as well.

11.4 Proximal policy optimization

In the proximal policy optimization [10], we would like to optimize the following local approximation:

P(wπ) ≃ Lπold
(wπ) = P(wπold

) + Eπ

[∞∑
t=0

γtAπold
(st, at)

]
(13)

where Aπold
(s, a) is the advantage function of the new policy π over the older policy πold and the

advantage function is defined as follows:

Aπold
(s, a) = Eπ[qπold

(s, a)− vπold
(s)]

= Eπ[r(s, a) + γvπold
(s′) + vπold

(s)]
(14)

Reinforcement Learning / Shuhei Watanabe 26/27

Intuitively speaking, the advantage function measures the improvement of the policy given value func-
tions of the old policy. By rearanging Eq (13) to sum over states instead of time steps, we obtain:

Lπold
(wπ)− P(wold) = Es∼pnew(s),a∼π[Aπold

(s, a)] (15)

From these equations, the performance optimization is achieved by the maximization of the expected
advantage function given a state distribution pnew(s) of a new policy π. However, since we cannot
sample from a policy that has not been applied, we ignore the change in the state distribution
and use the following proxy to reuse the old data:

wπ ∈ argmaxwEs∼pold(s),a∼πold

[
π(·|·;w)

πold
Aπold

(s, a)

]
where Es∼pold(s),a∼πold

[
π

πold
Aπold

(s, a)

]
= Lπold

(wπ)− P(wold)

(16)

This optimization is performed via the stochastic gradient ascent over previously obtained N
trajectories. Note that the following equation is called improvement theory and it holds between the
surrogate function and the original objective:

Lπold
(wπ) ≥ P(wπ)− c ·max

s
DKL(πold(a|s)∥π(a|s))︸ ︷︷ ︸

regularization
(17)

where c is a positive constant number. The statement of this theorem is that the optimization of
the surrogate is similar to that of the original one as long as we keep the KL-divergence beween
those two sufficiently small. In practice, we apply either clipping to the importance to increase the
stability or subtracting the KL-divergence from the surrogate objective to put a penalty on largely
different policies, because Lπold

(wπ) is a local approximation of the performance P(wπ) and optimistic
optimizaitons lead to high bias and high variance.

12 Advanced value-based methods

1. Prioritized experience replay [9]: The DQN training can be inefficient when we sample
mini-batches uniformly from the experience, so it prioritizes the importance measured by the
magnitude of TD error27. The mini-batches are sampled by the weighted distribution based on
the priorities. We do not use deterministic selections to avoid forgetting the transitions with
small priorities and sampling only noisy TD error.

2. Distributional RL [2]: It uses long-term value distribution. There is no convergence guarantee,
but it can model multi-modalities in value distributions and it may help with non-stationarities;
therefore, it can be stable.

3. Deep deterministic policy gradient (DDPG) [6]: DDPG is an actor-critic continuous DQN
method. In the case of continuous actions, the greedy step is not trivial; therefore, it performs
the approximation of deterministic actor a(s; θ) = argmaxaq̂π(s, a;w) by a NN and update its
parameters θ by deterministic policy gradient theorem. DDPG builds the basis for SOTA actor-
critic algorithms, but can be unstable and sensitive to its hyperparameters.

4. TD3 [3]: It introduces clipped double Q-learning, delayed policy updates and target-policy
smoothing to the vanilla DDPG. The update is similar to expected SARSA. Clipped double
Q-learning takes the minimum of two Q-networks and removes the overestimation bias. Delayed
policy updates performs the update every certain steps and removes the overestimation by ig-
noring the mutual dependency between actor and critic updates. Target-policy smoothing adds
gaussian noise to the next action in the target calculation.

27This TD errors are fixed once they are stored, so the older memory can be biased.

Reinforcement Learning / Shuhei Watanabe 27/27

5. Soft actor-critic [4]: It promotes the exploration by adding the entropy of the policy given a
state st to the reward.

Note that all of them except distributional RL use TD error for the weight update.

References

[1] Bauschke, H.H., Cruz, J., Nghia, T.T., Phan, H.M., Wang, X.: Optimal rates of convergence of
matrices with applications. arXiv preprint arXiv:1407.0671 (2014)

[2] Bellemare, M.G., Dabney, W., Munos, R.: A distributional perspective on reinforcement learning.
In: International Conference on Machine Learning. pp. 449–458. PMLR (2017)

[3] Fujimoto, S., Hoof, H., Meger, D.: Addressing function approximation error in actor-critic meth-
ods. In: International Conference on Machine Learning. pp. 1587–1596. PMLR (2018)

[4] Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In: International conference on machine
learning. pp. 1861–1870. PMLR (2018)

[5] Konda, V.R., Tsitsiklis, J.N.: Actor-critic algorithms. In: Advances in neural information pro-
cessing systems. pp. 1008–1014 (2000)

[6] Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.:
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015)

[7] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.:
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)

[8] Riedmiller, M.: Neural fitted q iteration–first experiences with a data efficient neural reinforcement
learning method. In: European conference on machine learning. pp. 317–328. Springer (2005)

[9] Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. arXiv preprint
arXiv:1511.05952 (2015)

[10] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347 (2017)

