
Master Thesis

Significant Runtime Reduction for
Asynchronous Multi-Fidelity

Optimization on Zero-Cost Benchmarks

Shuhei Watanabe

Examiner: Prof. Dr. Frank Hutter
Second Examiner: Dr. Katharina Eggensperger
Advisers: Neeratyoy Mallik

Edward Bergman

University of Freiburg
Faculty of Engineering

Department of Computer Science
Machine Learning Lab

October 15th, 2023

Writing Period

11. 08. 2023 – 15. 10. 2023

Examiner

Prof. Dr. Frank Hutter

Second Examiner

Dr. Katharina Eggensperger

Advisers

Neeratyoy Mallik & Edward Bergman

Declaration

I hereby declare that I am the sole author and composer of my thesis and that no
other sources or learning aids, other than those listed, have been used. Furthermore,
I declare that I have acknowledged the work of others by providing detailed references
of said work.
I hereby also declare that my Thesis has not been prepared for another examination
or assignment, either wholly or excerpts thereof.

Place, Date Signature

i

Abstract

As the research in deep learning evolved, its outstanding performance has attracted
the attention of practitioners. However, its performance is still susceptible to its
hyperparameter (HP) selection and it highlighted the importance of hyperparameter
optimization (HPO). Since the training of a deep learning model typically takes hours
to days, HPO is prohibitively expensive and it necessitates zero-cost benchmarks,
i.e. benchmarks that query the performance metric and runtime of a specific HP
configuration in a fraction such as tabular and surrogate benchmarks. Although
zero-cost benchmarks reduce the runtime of experiments significantly in non-parallel
setups, parallel setups cannot simply benefit from zero-cost benchmarks because
each worker must communicate the return order of each HP configuration based
on their queried runtime. In this thesis, we develop an easy-to-use Python package
to resolve the issue. We first derive the formulation for the wrapper and provide
the algorithm, which lets each worker communicate via file system and forces them
to wait only for a negligible amount of time to obtain the exact return order. We
comprehensively validate the correctness of our implementation using toy cases as
proof of concept. In the experiments using zero-cost benchmarks, we demonstrate
that our wrapper could finish the whole set of experiments 1.3 × 103 times faster
compared to the implementation naïvely waiting for each queried runtime and show
the baseline performance of optimizers used in major HPO libraries.

iii

Acknowledgements

First and foremost, I would like to thank Frank for the opportunity to work with
him and his group. Especially, I could not have presented some of my papers at
international conferences and their workshops without his financial support (and
thank Lina for handling the complicated paperwork many times!). I also would like
to thank the co-authors of these papers – Archit, Noor, Ozaki-san, Nomura-san,
Akimoto-sensei, Onishi-sensei, and Frank – although none of the topics are covered by
this thesis. Talking about the beginning of this thesis, I really appreciate Neeratyoy
for his offer to be my PhD supervisor especially because the aforementioned papers
did not have proper supervisors due to the topic choices and I really had a hard time
finding a PhD supervisor for my Master thesis. Originally, we were thinking of the
enhancement of BOHB, but I realized that experiments on parallel setups would take
a substantial amount of time even if we use tabular benchmarks. I really did not
want to spend time for waiting results – naïve simulation defined in this thesis! –, so
I created software to avoid it and talked to Neeratyoy about it. Although it was very
spontaneous (, yet we later found out that this software was exactly what HPOBench
seeks as written in its future work and that is how Katharina was appointed as a
second examiner!), he accepted my proposal and we finally reached the end of my
Master thesis. Also, I am grateful to Eddie for some advice on my code. I really
enjoyed talking to him about readable Python coding and trusted his advice about
Python coding the most because he is the only person who is actively catching up
with the latest Python coding as far as I know.

When I look back, my Master study was a long journey. I first need to show my
appreciation to Onishi-sensei from AIST for letting me study there before I came
to Freiburg and Ito Foundation for International Education Exchange, Deutschland-
stipendium, and ELIZA for their financial support. Since I came here during the
COVID-19 pandemic time, I really could not make real friends, but my family and
some friends from Tokyo – Paula, Øyvind, Serizawa, Chikaraishi – supported me men-
tally. I also would like to thank some of my few study friends – Simon, Baohe, Yedil,

v

and Goktug. Besides them, I really appreciate the company I will join – Preferred
Networks Inc. – to permit me to extend my stay here for half a year. Finally, I thank
all of my flatmates – Emi, Fenja, Jojo-san, Laurie, Marios, Melli, Oibinto, and Sarah
(alphabetical order and no intention in the order, so no fighting please!) – for the
cheerful year!

vi

Contents

1. Introduction 1

2. Background 5
2.1. Preliminaries and Notations . 5
2.2. Parallel Optimization . 8

2.2.1. Asynchronous Optimization with Cheap Optimizer 8
2.2.2. Asynchronous Optimization with Expensive Optimizer 9
2.2.3. Multi-Fidelity Optimization (MFO) 9

2.3. Optimization Using Zero-Cost Benchmark 11
2.3.1. Non-Parallel Setup . 11
2.3.2. Synchronous Setup . 11
2.3.3. Asynchronous Setup . 12

2.4. Parallel Processing in Hyperparameter Optimization Libraries 13
2.4.1. User Perspective of Hyperparameter Optimization Libraries . 14
2.4.2. Creating Workers in User Side 14
2.4.3. Creating Workers in Application Side 15

3. Related Work 17
3.1. Hyperparameter Optimization Benchmarks and Simulation 17
3.2. Multi-Fidelity Optimization Methods 17

4. Asynchronous Optimization Wrapper for Zero-Cost Benchmarks 21
4.1. Algorithm for Cheap Optimizer . 22
4.2. Algorithm for Expensive Optimizer 27
4.3. Limitations of Multi-Core Simulation 28
4.4. Algorithm for Ask-and-Tell Interface 31

5. Empirical Algorithm Validation on Test Cases 33
5.1. Visual Verification on Small Handcrafted Test Cases 33
5.2. Quantitative Verification on Random Test Cases 35

vii

5.3. Performance Verification on Actual Runtime Reduction 40

6. Real-World Experiments Using Zero-Cost Benchmarks 43
6.1. Experiment Setup . 43
6.2. Results . 48

7. Conclusions 51

Bibliography 60

A. Benchmark Problems 61
A.1. Branin Function . 61
A.2. Hartmann Function . 62
A.3. Tabular & Surrogate Benchmarks . 63

B. Tool Usage 69
B.1. Wrapper Object (ObjectiveFuncWrapper) Arguments 69
B.2. Wrapper Interface . 71

C. Additional Results 73
C.1. Performance over Time for Each Task 73
C.2. Actual & Simulated Runtimes for Each Setup 100
C.3. Critical Difference Diagrams for Different Budget Size 116

viii

List of Figures

1. The conceptual visualization of the runtime compression in an asyn-
chronous optimization. We need to make sure the return order of
each result is preserved after we compress the runtime because some
optimizers such as Bayesian optimization train a surrogate model using
the observations available at each iteration. 2

2. The simplest codeblock example of how our wrapper works. The exact
tool usage is discussed in Appendix B. Left: a codeblock example
without our wrapper (naïve simulation). We let each function call sleep
for the time specified by the queried result. Although this example
seems very naïve, this guarantees the implementation correctness easily
and researchers often use this implementation because it is hard to
correctly simulate asynchronous optimization for optimizers from other
researchers in a non-naïve simulation manner. Right: a codeblock
example with our wrapper (multi-core simulation). Users only need to
wrap the objective function with our module and remove the line for
sleeping while reproducing the identical result obtained by the naïve
simulation. 3

3. The conceptual visualization of our wrapper. Our wrapper yields the
exact return order to be reproduced by forcing each worker to sleep
until the exact timing when it should return the latest result. Users
only need to wrap their own function by our wrapper and there is no
need to change optimizer parts. 4

ix

4. The results of the experiments on small handcrafted cases obtained
by our wrapper. The x-axis shows the simulated runtime of each
experiment and the y-axis has four horizontal lines, which represent
the timelines for each worker. We can see that our wrapper gives
the expected timelines for each worker. Left: the test case with
the cheap optimizer. As discussed in the text, the order of each HP
configuration is correct. Center: the test case with the expensive
optimizer and a sequence of HP configurations that causes waiting
before some samplings. As expected, each sampling waits for the end
of the previous sampling. Right: the test case with the expensive
optimizer and a sequence of HP configurations that does not cause
any waiting. As expected, each sampling starts immediately after each
evaluation. 35

5. The return order verification results. When we use our wrapper, the
red dots are obtained. If all the dots are aligned on y = x, it implies
that the return order in a simulation with our wrapper and that in its
naïve simulation perfectly match. As expected, the red dots completely
overlap with y = x. See the text for the plot details. 36

6. The verification of the simulated runtime. The red dotted lines show
the simulated runtime of our wrapper and the black solid lines show
the actual runtime of the naïve simulation. The blue dotted lines show
the absolute difference between the simulated runtime of our wrapper
and the actual runtime of the naïve simulation multiplied by 1000 to
fit in the same scale as the other lines. The red dotted lines and the
black solid lines are expected to completely overlap and the blue lines
should exhibit zero ideally. 38

7. The size of the set of observations over time. The x-axis shows the
number of HP config evaluations and the y-axis shows the size of the
set observations |D|. The red dotted lines are for the results obtained
by our wrapper and the black solid lines are for the results obtained
by the naïve simulation. The blue dashed lines show the absolute
difference between these two values. We added the summation of the
absolute difference in the titles of each subfigure and the value was
zero for all the cases. 39

x

8. The verification of actual runtime reduction. The x-axis shows the
wall-clock time and the y-axis shows the cumulative minimum objective
value during optimizations. Naïve simulation (black dotted line) serves
the correct result and the simulated results (red/blue dotted lines) for
each algorithm should ideally match the result of the naïve simulation.
Actual runtime (red/blue solid lines) show the runtime reduction
compared to the simulated results and it is better if we get the final
result as quick as possible. Left: optimization of a deterministic multi-
fidelity 6D Hartmann function. The simulated results for both MCS
and SCS coincide with the correct result while both of them showed
significant speedups. Right: optimization of a noisy multi-fidelity
6D Hartmann function. While the simulated result for MCS coincide
with the correct result, SCS did not yield the same result. MCS
could reproduce the result because MCS still uses the same parallel
processing procedure and the only change is to wrap the objective
function. 40

9. The average rank on HPOBench. 46
10. The average rank on HPOlib. 46
11. The average rank on JAHS-Bench-201. 47
12. The average rank on LCBench. 47
13. The critical difference diagrams with 1/24 of the runtime budget for

random search. “[x.xx]” shows the average rank of each optimizer after
using 1/24 of the runtime budget for random search. For example,
“BOHB [2.90]” means that BOHB achieved the average rank of 2.90
among all the optimizers after running the specified amount of budget.
The title of each figure shows the number of workers used in the
visualization and the red bars connect all the optimizers that show no
significant performance difference. Note that we used all the results
except for JAHS-Bench-201 and LCBench due to the incompatibility
between SMAC and JAHS-Bench-201 and LCBench. 48

14. The performance over time on the Branin function. 74
15. The performance over time on the 3D Hartmann function. 74
16. The performance over time on the 6D Hartmann function. 75
17. The performance over time on OpenML ID 167104 from HPOBench. 75
18. The performance over time on OpenML ID 167184 from HPOBench. 76

xi

19. The performance over time on OpenML ID 189905 from HPOBench. 76
20. The performance over time on OpenML ID 167161 from HPOBench. 77
21. The performance over time on OpenML ID 167181 from HPOBench. 77
22. The performance over time on OpenML ID 167190 from HPOBench. 78
23. The performance over time on OpenML ID 189906 from HPOBench. 78
24. The performance over time on OpenML ID 167168 from HPOBench. 79
25. The performance over time on Slice Localization of HPOlib. 79
26. The performance over time on Protein Structure of HPOlib. 80
27. The performance over time on Naval Propulsion of HPOlib. 80
28. The performance over time on Parkinsons Telemonitoring of HPOlib. 81
29. The performance over time on CIFAR10 of JAHS-Bench-201. 81
30. The performance over time on Fashion-MNIST of JAHS-Bench-201. 82
31. The performance over time on Colorectal Histology of JAHS-Bench-201. 82
32. The performance over time on OpenML ID 3945 from LCBench. . . 83
33. The performance over time on OpenML ID 7593 from LCBench. . . 83
34. The performance over time on OpenML ID 34539 from LCBench. . 84
35. The performance over time on OpenML ID 126025 from LCBench. . 84
36. The performance over time on OpenML ID 126026 from LCBench. . 85
37. The performance over time on OpenML ID 126029 from LCBench. . 85
38. The performance over time on OpenML ID 146212 from LCBench. . 86
39. The performance over time on OpenML ID 167104 from LCBench. . 86
40. The performance over time on OpenML ID 167149 from LCBench. . 87
41. The performance over time on OpenML ID 167152 from LCBench. . 87
42. The performance over time on OpenML ID 167161 from LCBench. . 88
43. The performance over time on OpenML ID 167168 from LCBench. . 88
44. The performance over time on OpenML ID 167181 from LCBench. . 89
45. The performance over time on OpenML ID 167184 from LCBench. . 89
46. The performance over time on OpenML ID 167185 from LCBench. . 90
47. The performance over time on OpenML ID 167190 from LCBench. . 90
48. The performance over time on OpenML ID 167200 from LCBench. . 91
49. The performance over time on OpenML ID 167201 from LCBench. . 91
50. The performance over time on OpenML ID 168329 from LCBench. . 92
51. The performance over time on OpenML ID 168330 from LCBench. . 92
52. The performance over time on OpenML ID 168331 from LCBench. . 93
53. The performance over time on OpenML ID 168335 from LCBench. . 93
54. The performance over time on OpenML ID 168868 from LCBench. . 94

xii

55. The performance over time on OpenML ID 168908 from LCBench. . 94

56. The performance over time on OpenML ID 168910 from LCBench. . 95

57. The performance over time on OpenML ID 189354 from LCBench. . 95

58. The performance over time on OpenML ID 189862 from LCBench. . 96

59. The performance over time on OpenML ID 189865 from LCBench. . 96

60. The performance over time on OpenML ID 189866 from LCBench. . 97

61. The performance over time on OpenML ID 189873 from LCBench. . 97

62. The performance over time on OpenML ID 189905 from LCBench. . 98

63. The performance over time on OpenML ID 189906 from LCBench. . 98

64. The performance over time on OpenML ID 189908 from LCBench. . 99

65. The performance over time on OpenML ID 189909 from LCBench. . 99

66. The critical difference diagrams for the setup without SMAC with the
budget of Tmax

k /210. 117

67. The critical difference diagrams for the setup without SMAC with the
budget of Tmax

k /29. 117

68. The critical difference diagrams for the setup without SMAC with the
budget of Tmax

k /28. 117

69. The critical difference diagrams for the setup without SMAC with the
budget of Tmax

k /27. 118

70. The critical difference diagrams for the setup without SMAC with the
budget of Tmax

k /26. 118

71. The critical difference diagrams for the setup without SMAC with the
budget of Tmax

k /25. 118

72. The critical difference diagrams for the setup without SMAC with the
budget of Tmax

k /24. 119

73. The critical difference diagrams for the setup without SMAC with the
budget of Tmax

k /23. 119

74. The critical difference diagrams for the setup without SMAC with the
budget of Tmax

k /22. 119

75. The critical difference diagrams for the setup without SMAC with the
budget of Tmax

k /2. 120

76. The critical difference diagrams for the setup without SMAC with the
budget of Tmax

k . 120

77. The critical difference diagrams for the setup with SMAC with the
budget of Tmax

k /210. 120

xiii

78. The critical difference diagrams for the setup with SMAC with the
budget of Tmax

k /29. 121
79. The critical difference diagrams for the setup with SMAC with the

budget of Tmax
k /28. 121

80. The critical difference diagrams for the setup with SMAC with the
budget of Tmax

k /27. 121
81. The critical difference diagrams for the setup with SMAC with the

budget of Tmax
k /26. 122

82. The critical difference diagrams for the setup with SMAC with the
budget of Tmax

k /25. 122
83. The critical difference diagrams for the setup with SMAC with the

budget of Tmax
k /24. 122

84. The critical difference diagrams for the setup with SMAC with the
budget of Tmax

k /23. 123
85. The critical difference diagrams for the setup with SMAC with the

budget of Tmax
k /22. 123

86. The critical difference diagrams for the setup with SMAC with the
budget of Tmax

k /2. 123
87. The critical difference diagrams for the setup with SMAC with the

budget of Tmax
k . 124

xiv

List of Tables

1. The advantages and disadvantages of each wrapper algorithm. Note
that © implies that it is an advantage and × implies that it is a
disadvantage. “Actual Multi-Core Handling” means that we can directly
run multi-core optimization natively supported in an HPO library. . 31

2. Actual and simulated runtimes for total experiment runtimes. Act.
is the total actual runtime and Sim. is the total simulated runtime.
× Fast shows how many times the total actual runtime was faster. 44

3. The search space of the MLP benchmark in HPOBench (5 discrete +
1 fidelity parameters). Note that we have 2 fidelity parameters only
for the raw benchmark. Each benchmark has performance metrics of
30000 possible configurations with 5 random seeds. 64

4. The search space of HPOlib (6 discrete + 3 categorical + 1 fidelity
parameters). Each benchmark has performance metrics of 62208

possible configurations with 4 random seeds. 65
5. The search space of JAHS-Bench-201 (2 continuous + 2 discrete + 8

categorical + 2 fidelity parameters). JAHS-Bench-201 is an XGBoost
surrogate benchmark and the outputs are deterministic. 65

6. The search space of LCBench (3 discrete + 4 continuous + 1 fidelity
parameters). Although the original LCBench is a collection of 2000

random configurations, YAHPOBench created random-forest surro-
gates over the 2000 observations. Users can choose deterministic or
non-deterministic outputs. 66

7. The correspondance of task IDs and their tasks. As HPOBench and
LCBench use OpenML tasks, we show the OpenML task ID for them. 67

8. Actual and simulated runtimes for Random on synthetic functions. . 101
9. Actual and simulated runtimes for HyperBand on synthetic functions. 101
10. Actual and simulated runtimes for TPE on synthetic functions. . . . 101

xv

11. Actual and simulated runtimes for BOHB on synthetic functions. . 101
12. Actual and simulated runtimes for HEBO on synthetic functions. . 101
13. Actual and simulated runtimes for DEHB on synthetic functions. . . 102
14. Actual and simulated runtimes for NePS on synthetic functions. . . 102
15. Actual and simulated runtimes for SMAC on synthetic functions. . 102
16. Actual and simulated runtimes for Random on HPOBench. 102
17. Actual and simulated runtimes for HyperBand on HPOBench. . . . 103
18. Actual and simulated runtimes for TPE on HPOBench. 103
19. Actual and simulated runtimes for BOHB on HPOBench. 103
20. Actual and simulated runtimes for HEBO on HPOBench. 104
21. Actual and simulated runtimes for DEHB on HPOBench. 104
22. Actual and simulated runtimes for NePS on HPOBench. 104
23. Actual and simulated runtimes for SMAC on HPOBench. 105
24. Actual and simulated runtimes for Random on HPOlib. 105
25. Actual and simulated runtimes for HyperBand on HPOlib. 105
26. Actual and simulated runtimes for TPE on HPOlib. 105
27. Actual and simulated runtimes for BOHB on HPOlib. 106
28. Actual and simulated runtimes for HEBO on HPOlib. 106
29. Actual and simulated runtimes for DEHB on HPOlib. 106
30. Actual and simulated runtimes for NePS on HPOlib. 106
31. Actual and simulated runtimes for SMAC on HPOlib. 107
32. Actual and simulated runtimes for Random on JAHS-Bench-201. . . 107
33. Actual and simulated runtimes for HyperBand on JAHS-Bench-201. 107
34. Actual and simulated runtimes for TPE on JAHS-Bench-201. 107
35. Actual and simulated runtimes for BOHB on JAHS-Bench-201. . . . 107
36. Actual and simulated runtimes for HEBO on JAHS-Bench-201. . . . 108
37. Actual and simulated runtimes for DEHB on JAHS-Bench-201. . . . 108
38. Actual and simulated runtimes for NePS on JAHS-Bench-201. . . . 108
39. Actual and simulated runtimes for Random on LCBench. 109
40. Actual and simulated runtimes for HyperBand on LCBench. 110
41. Actual and simulated runtimes for TPE on LCBench. 111
42. Actual and simulated runtimes for BOHB on LCBench. 112
43. Actual and simulated runtimes for HEBO on LCBench. 113
44. Actual and simulated runtimes for DEHB on LCBench. 114
45. Actual and simulated runtimes for NePS on LCBench. 115

xvi

List of Algorithms

1. Automatic Waiting Time Scheduling Wrapper (see Figure 3 as well) 26
2. Waiting Algorithm for Non One-to-One Exchange Setup 29
3. Single-Core Simulation (SCS) Using the Ask-and-Tell Interface . . . 30

xvii

1. Introduction

Hyperparameter (HP) optimization of deep learning is crucial for strong perfor-
mance [1, 2] and it surged the research on HP optimization (HPO) of deep learning.
However, due to the heavy computational nature of deep learning, HPO is often
prohibitively expensive and both energy and time costs are not negligible. This is
the driving force behind the emergence of zero-cost benchmarks such as tabular and
surrogate benchmarks, which enable yielding the (predictive) performance of a specific
HP configuration in a small amount of time [3, 4, 5, 6].

Although these benchmarks effectively reduce the energy usage and the runtime
of experiments in many cases, experiments considering runtimes between parallel
workers may not be easily benefited as seen in Figure 1. For example, multi-fidelity
optimization (MFO) [7] has been actively studied recently due to its computational
efficiency [8, 9, 10, 11], but because of its asynchronous nature, the call order of
each worker must be appropriately sorted out to not break the states that the actual
experiments would go through. While this problem is naïvely addressed by making
each worker wait for the runtime the actual deep learning training would take, each
worker must wait for a substantial amount of time in this case, and hence it ends up
wasting energy and time.

To address this problem, we developed an easy-to-use Python wrapper (see Figure 2
for the simplest codeblock and Figure 3 for the conceptual visualization) that auto-
matically sorts out the right release order of evaluations for each worker in a fraction
and forces each worker to sleep in order to match the apparent evaluation order from
the optimizer perspective. Since optimizers have different characteristics and their
libraries use different multi-core processing methods, our wrapper needs to be able
to support such diverse libraries. For example, BOHB [10] uses file servers to share
observations across workers and DEHB [11] uses dask, which is a multiprocessing-
based library. Furthermore, Bayesian optimization (BO) typically takes more time to
sample due to fantasization [12] or a long time for the optimization of acquisition

1

0 200 400 600 800 1000

Worker 1

Worker 2

Worker 3

1 2 3 4 5 6 7 8Results

0.0 0.2 0.4 0.6 0.8 1.0

Compress the waiting time
while maintaining the order

Cumulative Time [s]

Figure 1.: The conceptual visualization of the runtime compression in an asyn-
chronous optimization. We need to make sure the return order of each
result is preserved after we compress the runtime because some opti-
mizers such as Bayesian optimization train a surrogate model using the
observations available at each iteration.

functions [13]. To clarify the application scope of our wrapper, we would specifically
like to answer the following research questions:

RQ1: What kind of algorithm is valid for an optimizer that uses multiple workers
concurrently depending on its sampling cost?

RQ2: Do the results obtained by our wrapper match the results obtained by naïvely
sleeping for the runtime of each query?

Note that we call an optimizer that uses multiple workers concurrently multi-core
optimizer hereafter. Even with the solutions to these research questions above, our
wrapper still suffers from issues common in multi-core processing optimizers such as
deadlock, a race condition, and latency due to the communication between workers.
To alleviate these issues, we delve into the possibility of using only a single core to
simulate asynchronous optimizations, and thus the third research question is:

RQ3: Is it possible to simulate asynchronous optimization only with a single core?

The single-core simulation enables researchers to perform experiments on parallel
setups even without explicitly coding multi-core optimization. In this thesis, we will
give the mathematical formulation for our algorithm under some assumptions and
empirically test our algorithm on several test cases that could be the edge cases of
possible wrapper algorithms.

2

Figure 2.: The simplest codeblock example of how our wrapper works. The exact
tool usage is discussed in Appendix B. Left: a codeblock example
without our wrapper (naïve simulation). We let each function call sleep
for the time specified by the queried result. Although this example
seems very naïve, this guarantees the implementation correctness easily
and researchers often use this implementation because it is hard to
correctly simulate asynchronous optimization for optimizers from other
researchers in a non-naïve simulation manner. Right: a codeblock
example with our wrapper (multi-core simulation). Users only need to
wrap the objective function with our module and remove the line for
sleeping while reproducing the identical result obtained by the naïve
simulation.

Last but not least, many optimizers have been invented so far, but they were mostly
compared in the non-parallel setup. Therefore, the fourth research question is:

RQ4: Is it necessary to test the performance of optimizers on the parallel setup?

In the experiments, we use various open source software (OSS) optimizer libraries such
as SMAC3 [14] and Optuna [15] on zero-cost benchmarks and we compare the changes
in the performance based on the number of parallel workers to use. The experiments
not only provide the baselines but also showed that our wrapper finished all the
experiments 1.3× 103 times faster than the naïve simulation (see Figure 2 (Left)).
The implementation for the experiments in this thesis is also publicly available 1.

In summary, the contributions of this thesis are to:

1. provide the algorithms to simulate an asynchronous optimization using a multi-
core optimizer in an online manner with the exact mathematical formulation
(the answer to RQ1),

2. make the software publicly available and test the software using several examples
to empirically validate that our implementation is correct irrespective of a
sampling cost of an optimizer (the answers to RQ2),

1https://github.com/nabenabe0928/master-thesis-experiment

3

https://github.com/nabenabe0928/master-thesis-experiment

Our WrapperOptimizer

x(n), p

f (n)

Adapt to
API

Adapt to
Optimizer

f (n), (n)

Tp Tp + (n)

Objective Function

1 p P

Workers

f ()

T1

f (n)

Tp

f ()

TP

Core Part
Wait till

Tp = min Ti

Figure 3.: The conceptual visualization of our wrapper. Our wrapper yields the
exact return order to be reproduced by forcing each worker to sleep until
the exact timing when it should return the latest result. Users only need
to wrap their own function by our wrapper and there is no need to change
optimizer parts.

3. provide an option to simulate only with a single core, which allows researchers
to perform experiments in parallel setups even without coding a multi-core
algorithm (the answer to RQ3), and

4. demonstrate that our experiment, whose code is available in public 2, could
speed up the whole runtime of the series of experiments 1.3× 103 times and
that experiments for parallel setup are necessary by showing that the relative
performance of major optimizers depend on the number of workers using a
statistical test (the answer to RQ4).

2https://github.com/nabenabe0928/master-thesis-experiment

4

https://github.com/nabenabe0928/master-thesis-experiment

2. Background

In this chapter, we formally introduce asynchronous optimization in different scenarios
and explain MFO, which is one of the most common problem setups for asynchronous
optimization.

2.1. Preliminaries and Notations

We first note that the n-th sample x(n) and the sample of the n-th observation xn are
different concepts. More specifically, samples x(n) are ordered by the sampling order,
and observations xn are ordered by the return order which means the i-th result
(xi, f̃i) is delivered to a set of observations DN earlier than the j-th result (xj , f̃j)

for an arbitrary pair of (i, j) where i < j. For example, if there are two workers and
an optimizer samples two HP configurations x and x′ in this order, x(1) := x and
x(2) := x′. On the other hand, if the evaluations for x(1) and x(2) take 20 seconds
and 10 seconds respectively, x1 := x(2) and x2 := x(1) because the result of x(2)

will come first and that of x(1) will come next. Throughout this thesis, we use the
following notation:

• [i] := {1, . . . , i}, a set of integers from 1 to i,

• Xd ⊆ R (for d ∈ [D]), a domain of the d-th hyperparameter,

• X := X1 ×X2 × · · · × XD ⊆ RD, a search space,

• x ∈ X , a hyperparameter configuration in the search space X ,

• f(x) : X → RM , an objective function 1,

• τ(x) : X → R+, a runtime function,
1In the thesis, we use a single-objective function with M = 1 for notational simplicity, but our
wrapper is applicable to functions with M > 1 as well.

5

• f̃ ∈ R: an observation of the objective function given an HP configuration x
with a noise ε,

• τ̃ ∈ R+: an observation of the runtime function given an HP configuration x
with a noise ε,

• DN := {(xn, f̃n)}Nn=1, a set of observations,

• xn ∈ X , the n-th observation in DN ,

• π(x|DN), a policy of an optimizer,

• x(n) ∈ X , the n-th sample,

• t̃(n) ∈ R+, the sampling time, i.e. the time interval between the end of the last
evaluation and the beginning of the next evaluation, for the n-th sample x(n),

• t̃n ∈ R+, the sampling time, i.e. the time interval between the end of the last
evaluation and the beginning of the next evaluation, for the sample of the n-th
observation xn,

• P ∈ Z+: the number of parallel workers,

• a(n), a set of arguments used to evaluate the n-th sample x(n) such as random
seed, intermediate model state, and fidelity parameters,

• Wp : X → R2, the p-th (p ≤ P) worker that returns f̃ and τ̃ , or their estimations
given a set of arguments a,

• p(n) : Z+ → [P]: an index specifier of which worker processed the result of n-th
sample (x(n), f̃ (n)),

• I(N)
p := {n ∈ [N] | p(n) = p}, a set of the indices of samples the p-th worker

processed,

• w̃(n) ∈ R+, the waiting time for the n-th sample x(n), i.e. the time between
when the sampling for x(n) is requested and when the sampling actually starts,

• w̃n ∈ R+, the waiting time for the sample of the n-th observation xn, i.e. the
time between when the sampling for xn is requested and when the sampling
actually starts, and

• T
(N)
p ∈ R+, the simulated runtime of the p-th worker using the results of up to

the N -th sample (see Eq. (2) for the formal definition).

6

Furthermore, we use the following terminologies:

Definition 1 (Optimizer). Given a search space X and a set of observations DN , an
optimizer is used to sample an HP configuration based on a policy,
i.e. x ∼ π(x|DN).

Definition 2 (Surrogate Benchmark). Given a set of actual observations
{(xn, f̃n, τ̃n)}Nn=1, a surrogate benchmark trains machine learning models for an
objective metric f̂(x) : X → R and for runtime τ̂(x) : X → R+, and can query the
estimated objective metric and the estimated runtime for an arbitrary HP configuration
x with a negligible amount of time T � τ̃ .

Definition 3 (Tabular Benchmark). Given a discrete search space X := {xn}Nall
n=1,

a tabular benchmark records an objective metric and runtime of all the possible HP
configurations and can query the actual objective metric and the actual runtime for
an arbitrary HP configuration x ∈ X with a negligible amount of time T � τ̃ .

Examples of surrogate benchmarks are JAHS-Bench-201 [6] and the benchmarks
introduced by Eggensperger et al. [3] and examples of tabular benchmarks are
HPOLib [16] and NAS-Bench-201 [17]. Note that we assume that the query cost
of these benchmarks is zero in this thesis. Furthermore, we define the following
terminologies:

Definition 4 (Zero-Cost Benchmark). Zero-cost benchmark is a tabular or surrogate
benchmark for a task that exhibits a large runtime τ̃ .

Definition 5 (Actual Runtime). Actual runtime is the wall-clock time of an experi-
ment. For example, an actual runtime of a training of a deep learning model with
an HP configuration, i.e. f̃ , would be several hours and an actual runtime of HPO
that trains deep learning models to find an optimal HP configuration would be several
days. On the other hand, an actual runtime of HPO that uses a zero-cost benchmark
is typically several seconds to minutes.

Definition 6 (Simulated Runtime). Simulated runtime is the estimated wall-clock
time of an experiment using our wrapper. For example, a simulated runtime of HPO
that uses a zero-cost benchmark with our wrapper should ideally coincide with the

7

actual runtime of HPO that actually trains deep learning models even though the
actual runtime of the experiment takes only several seconds to minutes.

Definition 7 (Worker). After an optimizer samples an HP configuration x, an
optimizer passes x to a worker and the worker processes x to obtain f̃ .

Definition 8 (Runtime of Worker). When an experiment uses a zero-cost benchmark,
the actual runtime of a worker for an HP configuration x, which is a query cost, is
almost zero while the simulated runtime is τ̃ . When an experiment does not use a
zero-cost benchmark, both the actual runtime and the simulated runtime of a worker
for an HP configuration x are τ̃ .

Definition 9 (Ask-and-Tell Interface 2). Ask-and-tell interface is an interface of an
optimizer library such that both a method that asks for an HP configuration x and a
method that tells a result (x, f̃) to the optimizer are provided to users.

2.2. Parallel Optimization

In this section, we describe the formal definitions of each problem setup.

2.2.1. Asynchronous Optimization with Cheap Optimizer

Assume we have a zero-cost benchmark, P workers, and a cheap optimizer, i.e. a
sampling time t̃(n) is negligible, if we use the notations from Section 2.1, then the
simulated runtime of the p-th worker is computed as follows:

T (N)
p :=

∑
n∈I(N)

p

τ̃ (n).
(1)

In turn, the (N + 1)-th sample will be processed by the worker that will be free
for the first time, and thus the index of the worker for the (N + 1)-th sample is
specified by argminp∈[P] T

(N)
p . Since the sampling time t̃(n) is negligible, the freed

worker immediately receives another configuration x(N+1) and no less than one worker
2See https://optuna.readthedocs.io/en/stable/tutorial/20_recipes/009_ask_and_tell.
html

8

https://optuna.readthedocs.io/en/stable/tutorial/20_recipes/009_ask_and_tell.html
https://optuna.readthedocs.io/en/stable/tutorial/20_recipes/009_ask_and_tell.html

will be free simultaneously in this scenario. In other words, x(N+1) is sampled from
π(x|DN−P+1) for N + 1 > P .

2.2.2. Asynchronous Optimization with Expensive Optimizer

Assume we have a zero-cost benchmark, P workers, and an expensive optimizer, i.e.
a sampling time t̃n is non-negligible, if we use the notations from Section 2.1, then
the simulated runtime of the p-th worker is computed as follows:

T (N)
p :=

∑
n∈I(N)

p

(w̃(n) + t̃(n) + τ̃ (n)).
(2)

In the same vein, the (N + 1)-th sample will be processed by one of the workers
that is free at the moment, and thus the index of the worker for the (N + 1)-th
sample is argminp∈[P] T

(N)
p . Since the sampling time is non-negligible, (an)other

worker(s) Wp′ may finish their evaluation during a sampling for the freed worker Wp,
i.e. ∃p′ ∈ [P] \ {p}, T (N)

p < T
(N)
p′ < T

(N)
p + t̃(N+1). It may cause waiting times for

some samplings, i.e. w̃(n) > 0. If an optimizer can sample multiple HP configurations
in parallel, the waiting time w̃(n) becomes always zero. Therefore, the simulated
runtime becomes:

T (N)
p :=

∑
n∈I(N)

p

(t̃(n) + τ̃ (n)).
(3)

Since the waiting times are always zero and the (N + 1)-th sample is obtained from
π(x|DN−P+1), this setup is identical to the one in Section 2.2.1 in principle. However,
if an optimizer needs to sample HP configurations one by one, we may have N −P + 1

observations or more when the (N + 1)-th sample is sampled. This implies that the
one-to-one exchange (Formally defined in Def. 16) as in Section 2.2.1 does not hold
in this scenario.

2.2.3. Multi-Fidelity Optimization (MFO)

Multi-fidelity optimization (MFO) [7] is an optimization that uses cheaper-to-evaluate
low-fidelity functions instead of the true objective function; see Section 3.2 for more
details of existing MFO methods. For example, when we optimize an HP configuration
of a deep learning model with training epochs of 200, 20-epoch training of the deep
learning model with an HP configuration x would be a low-fidelity function for the

9

training with the same HP configuration. As the goal of MFO is to save runtime as
much as possible, practitioners often combine MFO with asynchronous optimization.
More formally, we define a fidelity space as Z := Z1 × · · · × ZK , typically taken as
[0, 1]K and we also stick to [0, 1]K in this thesis, and a function that takes a fidelity
vector as g(x, z) where z ∈ [0, 1]K , we assume f(x) = g(x,1K) is the highest-fidelity
function, and 1K := [1, . . . , 1] ∈ [0, 1]K . Then a low-fidelity function of f(x) is an
arbitrary function g(x, z) that takes z 6= 1K . In MFO, our aim is to optimize the
highest-fidelity function f(x) while evaluating low-fidelity functions to save the actual
runtime. Although this is an abuse of notation, suppose the runtime function τ

takes the fidelity vector as well and we have multiple fidelity vectors {zl}Ll=1
3 such

that |f(x) − g(x, z1)| ≥ |f(x) − g(x, z2)| ≥ · · · ≥ |f(x) − g(x, zL)| (and typically
τ(x, z1) ≤ τ(x, z2) ≤ · · · ≤ τ(x, zL)), then a function g(x, zi) is said to have lower
fidelity than g(x, zj) for an arbitrary pair of (i, j) where i < j. The reason why
MFO is called multi-fidelity is that there are multiple choices of fidelity vectors z, but
not the dimension of the fidelity space K is larger than 1. Therefore, single-fidelity
optimization, which uses only z = 1K , is a simple single-objective optimization
problem. In the research context, many methods consider K = 1 only, and multi-
fidelity sometimes implies MFO with K = 1 and many-fidelity implies MFO with
K > 1. Related to MFO, we define the following terminologies and we consistently
use these terminologies throughout this thesis:

Definition 10 (Many-Fidelity Optimization). Many-fidelity optimization is the multi-
fidelity optimization with K > 1.

Definition 11 (Continual Setup). For the multi-fidelity optimization with K = 1, if
an evaluation of g(x, z) can be continued from g(x, z′) for z′ < z, we call this setup
of multi-fidelity optimization “continual setup”.

For example, when we have a neural network with an HP configuration x trained for
20 epochs and we would like to train the same network with x for 100 epochs, we
can restart the training from 20 epochs rather than starting it from scratch. On the
other hand, if we train a neural network with an HP configuration x trained using
only 10% of a full dataset and we would like to train the same network with x on the
full dataset, we cannot restart from the result on 10% of the full dataset. The first
setup is continual setup and the second setup is non-continual setup. Furthermore,
we define the following terminology:

3zL takes 1K , which is the highest fidelity.

10

Definition 12 (Evaluation Restart). If we evaluate g(x, z) using an intermediate
state g(x, z′) where z < z′, we call this evaluation “evaluation restart”.

2.3. Optimization Using Zero-Cost Benchmark

In this section, we explain how optimizations using a zero-cost benchmark work.
Especially, we focus on how to save experiment runtimes with a zero-cost benchmark.
Note that parallel setup is classified into either synchronous or asynchronous setup.

2.3.1. Non-Parallel Setup

In general, an optimization procedure for a single worker works as follows:

1. A set of observations is initialized to D0 = ∅ and we set N = 0,

2. An optimizer samples an HP configuration xN+1 from its policy π(x|DN),

3. A worker evaluates f̃N+1 and appends (xN+1, f̃N+1) to DN ,

4. N is incremented to N + 1, and

5. An optimizer repeats 2. – 4. until its budget runs out.

The stochastic part of this procedure lies in Process 2 where we sample an HP
configuration from the policy π(x|DN). As the policy π is conditioned on DN , the
optimization results of both using and not using a zero-cost benchmark match as
long as DN at each iteration is identical. In non-parallel setup, we evaluate each
HP configuration one by one, so the observation order is same as the sampling order
and this is why we can simply replace the actual evaluation of f̃ with a zero-cost
benchmark.

2.3.2. Synchronous Setup

When an optimization method requires G HP configurations to update its policy
π(x|DN), we call this setup synchronous setup. In this setup, an optimization method
works as follows:

1. A set of observations is initialized to D0 = ∅ and we set i = 0,

11

2. An optimizer samples G HP configurations {xiG+j}Gj=1, i.e. the i-th generation,
from its policy π(x|DiG),

3. Each HP configuration is assigned to one of the available workers or waits until
a worker becomes available if no worker is free,

4. An optimizer waits until all the evaluations f̃iG+1, . . . , f̃iG+G come and updates
the observations to D(i+1)G = DiG ∪ {(xiG+j , f̃iG+j)}Gj=1,

5. i is incremented to i+ 1, and

6. An optimizer repeats 2. – 5. until its budget runs out.

Similarly to the non-parallel setup, synchronous setup is also straightforward because
the observation order in the i-th generation does not affect the stochasticity of the
sampling policy and all the workers simply need to wait until the last observation
in the i-th generation comes. Although it is not trivial to appropriately allocate
each HP configuration to workers in an online manner, we can perfectly reproduce
the exact observation order and the simulated runtime T (n)

p for an arbitrary pair
of (n, p) ∈ [N]× [P] in a post-hoc way as long as we store the optimization results
{(xn, f̃n, τ̃n)}Nn=1. Since it is possible to reproduce the simulated runtime T (n)

p at
any point for an arbitrary p ∈ [P], we can simply run an experiment with a single
worker and calculate simulated times for any p ∈ [P] later. Although we provide the
functionality to reproduce synchronous setup in our wrapper, we do not discuss the
details in this thesis.

2.3.3. Asynchronous Setup

When an optimizer updates its policy every time it receives a result and there are
multiple workers, we call this setup asynchronous setup. In this setup, an optimizer
works as follows:

1. A set of observations is initialized to D0 = ∅ and we set N = 0,

2. An optimizer samples an HP configuration x(N+1), i.e. the (N + 1)-th sample,
from its policy π(x|Dn) where N − P + 1 ≤ n ≤ N and n mostly depends on
the sampling time at each iteration,

12

3. the p-th worker where p = argminp′∈[P] T
(N)
p′ evaluates f̃ (N+1) and appends

(x(N+1), f̃ (N+1)) to DN ′ 4,

4. N ′ is incremented to N ′ + 1, and

5. An optimizer repeats 2. – 4. until its budget runs out.

Unlike the other setups, the exact observation order and the exact set of observations
for asynchronous optimization cannot be reproduced in a post-hoc manner because
the policy π gives us a wrong result unless the set of observations at each sampling
timing is exact. Therefore, the exact observation order must be preserved when using
a zero-cost benchmark. The most naïve way to achieve this is the following:

Definition 13 (Naïve Simulation). For each query x(n), the allocated worker sleeps
for τ̃ (n) seconds.

With the naïve simulation (see also Figure 2 (Left)), we can simply reproduce the
exact observation order. However, the naïve simulation cannot benefit in terms of the
runtime reduction, and thus we need to invent a wrapper that lets each worker sleep
only for a small amount of time while maintaining the exact observation order.

2.4. Parallel Processing in Hyperparameter Optimization
Libraries

In this section, we describe two different designs of hyperparameter optimization
libraries and their asynchronous parallel processing mechanism. Throughout this
thesis, we assume that a sampler runs on the main process, which means multiple
HP configurations cannot be sampled simultaneously, and distributes each HP con-
figuration to one of the workers created in a child process or a child thread. Note
that although we do not discuss parallel sampling in this thesis, our wrapper also
supports parallel samplers.

4Since the evaluation of f̃ (N+1) requires τ̃ (N+1) seconds, N becomes N ′ ≥ N while we wait for the
evaluation.

13

2.4.1. User Perspective of Hyperparameter Optimization Libraries

Since HPO libraries optimize an objective function f(x) given its search space X
(and possibly its fidelity space Z as well), libraries require users to provide: (1) an
objective function or its wrapper that has the compatible signatures for each library,
(2) its search space X , (3) its fidelity space Z, and (4) optimization setup parameters.
Examples of optimization setup parameters are such as the optimization direction,
i.e. minimization or maximization, the number of objectives M , whether to use
MFO, and an optimization budget. Most libraries first take all four elements with
compatible signatures or formats. Then once libraries trigger an optimization, they
internally repeat a suggestion of an HP configuration and its evaluation until the
specified budget runs out 5.

In the optimization loop, an optimizer repeats (1) sampling of an HP configuration
x(N+1) from its policy π(x|Dn), (2) allocation of the HP configuration x(N+1) to
a free worker, and (3) update of the policy after receiving available observations
{(xi, f̃i)}N

′
i=n+1. Most importantly, the objective function is the only component

that has opportunities to interact with libraries after the initialization because the
objective function has to take an HP configuration from the sampler, evaluate it, and
return the output. As mentioned earlier, the optimization loop is not exposed to
users for asynchronous optimization, so we need to rely on the internal process of
the objective function to let each worker communicate with each other. To enable
communication, we must be able to know which evaluation is processed by which
worker out of P different workers and we need to understand the mechanisms of
worker spawning functions in HPO libraries. Therefore, we explain two different user
interfaces in the next two subsections.

2.4.2. Creating Workers in User Side

This type of parallel processing employs typically multiple main processes or allocates
an instantiated objective function to each worker on the user side. The concrete
examples of such parallel processing are mpi4py, file-based synchronization, and server-
based synchronization. For example, mpi4py executes a Python script P times to run
P parallel workers. Then each run, i.e. each worker, receives a unique worker ID and

5To the best of our knowledge, asynchronous optimization does not accept the ask-and-tell interface
because users need to implement the asynchronous part in this case; see Def. 9 for the definition
of the ask-and-tell interface.

14

they use the worker ID when they send data to or receive data from a specific worker.
The basic mechanism is the same for file-based or server-based synchronization as
well. They send or receive data via file system or a built server. Talking about major
HPO libraries, NePS 6 uses file-based synchronization and BOHB (HPBandSter) [10]
uses server-based synchronization. These libraries instantiate the provided objective
function for each worker and keep them alive in each worker until the end of an
optimization.

2.4.3. Creating Workers in Application Side

We first assume that there are only P unique thread IDs or process IDs, one of them
is assigned to each evaluation, and none of the concurrent evaluations shares its ID
with the other concurrent evaluations 7. This type of parallel processing employs
only one main process during a run and this main process creates child processes or
child threads to distribute multiple jobs (one job for each child process or thread at
most) to them in the run and each of them processes the assigned jobs concurrently.
The concrete examples of such parallel processing are multiprocessing, threading,
dask, and concurrent in Python. Talking about major HPO libraries, Optuna [15]
uses concurrent and SMAC3 [14] uses dask. These parallel processing modules call
the provided objective function every time an HP configuration is allocated to a
worker and all the workers share the objective function. Hence, if we would like to
let each worker communicate with each other, the objective function must somehow
recognize which worker is calling the objective function for each evaluation. We
discuss further details in the next chapter, but process ID or thread ID is used to
achieve this in a nutshell.

6https://github.com/automl/neps/
7It is very common for parallel processing to have consistent thread IDs or process IDs until one run
finishes. Without this assumption, it is harder to resolve the racing condition between workers.

15

3. Related Work

3.1. Hyperparameter Optimization Benchmarks and
Simulation

Although there have been many HPO benchmarks invented for MFO such as
HPOBench [4], NASLib [18], and JAHS-Bench-201 [6], none of them provides a
module to allow researchers to simulate runtime internally. Other than HPO bench-
marks, many HPO frameworks handling MFO have also been developed so far such as
Optuna [15], SMAC3 [14], Dragonfly [19], and RayTune [20]. However, no framework
above considers the simulation of runtime. Although HyperTune [21] and Syne-
Tune [22] are internally simulating the runtime, we cannot simulate optimizers of
interest if the optimizers are not introduced in the packages. It implies that researchers
cannot immediately simulate their own new methods unless they incorporate their
methods in these packages and limits experiments and fair comparisons. Furthermore,
their simulation backend assumes that optimizers take the ask-and-tell interface (see
Def. 9) and it requires the reimplementation of optimizers of interest in their codebase.
Since reimplementation is time-consuming and does not guarantee its correctness
without tests, it is helpful to have an easy-to-use Python wrapper for the simulation
that does not require any reimplementation.

3.2. Multi-Fidelity Optimization Methods

MFO has been already used in various fields [23, 24, 25] and many papers have been
published so far. The terminology “Multi-fidelity optimization (MFO)” was first
brought by Kandasamy et al. [7] although some papers already made some effort to
exploit lower-fidelity functions before [26, 27, 28, 29]. One of the most basic MFO
methods is successive halving (SH) [8]. It creates a population of HP configurations
and early-stops poor-performing HP configurations after using predetermined amounts

17

of a budget. A control parameter determines the amount of budgets at which each HP
configuration is checked. HyperBand (HB) [9] removes the control parameter by trying
several different budget choices in successive halving (SH). Due to the easy extensibility
of HB, it has been combined with various methods such as differential evolution [11, 30]
and Bayesian optimization [10, 31, 32, 14]. Not only these combinations, HB itself has
also been modified to improve the performance [33, 34, 35, 36, 37, 38, 39]. For example,
ASHA [33] promotes evaluations, which wait for the other ongoing evaluations, to
the next fidelity without waiting for all the evaluations in the population to reduce
the overhead caused by waiting times, PASHA [37] dynamically determines a budget
choice based on rank consistency and HyperJump [38] skips evaluations of HP
configurations that are likely to be early-stopped by HB. Along with HB and SH, the
median stopping rule [40] is also practically used.

While HB and SH prune evaluations based on some rules in principle, some papers
tackle this problem using machine learning algorithms. One of the approaches is
learning curve prediction [29, 41, 42, 43]. Learning curve prediction tries to learn
the time series of performance metrics over training epochs to judge if we should
stop some evaluations early. While these papers train a machine learning algorithm
along with a surrogate model for an optimization method, freeze-thaw Bayesian
optimization [28] and DyHPO [44] train a surrogate model that takes both HP
configuration x and a training epoch z. They once stop evaluations and restart
pending evaluations if they judge it is worth evaluating with more training epochs.
Another approach is cost-aware optimization, which considers the cost-effectiveness
of evaluations with respect to information gain. This approach first trains a joint
model ĝ(x, z) over HP configuration x and a fidelity vector z. Then it either
optimizes a cost-aware acquisition function, which is typically information gain per
cost [27, 45, 46, 47, 48, 49, 50], or narrows down the next candidates so that the next
evaluation surely reduces the uncertainty over the high-fidelity search space [7, 19, 51].
Although most methods train a joint model using multi-task Gaussian process [52],
some methods use a linear combination of surrogate models on different fidelities
[53, 32, 54]. The joint training in these papers relies on basic meta-learning methods
in HPO [55, 56, 57].

While the aforementioned methods fix an HP configuration and progressively increase
the fidelity, DAC [58, 59] dynamically changes an HP configuration x during training.
For example, population-based training [60, 61, 62, 63, 64] dynamically changes
neural architecture during training. To the best of our knowledge, population-based

18

training has not been supported by zero-cost benchmarks. Therefore, we do not
support the problems considered in DAC in this thesis. On the other hand, our
wrapper supports some other problem setups such as multi-objective optimization
and constrained optimization as existing zero-cost benchmarks assume these setups.
In fact, some multi-objective MFO methods already exist [65, 35, 30] and constrained
optimization [66, 67, 68, 69, 70] could also be potentially extended to the MFO
setup.

19

4. Asynchronous Optimization Wrapper
for Zero-Cost Benchmarks

Before delving into the details, we will first define the following terminologies:

Definition 14 (Multi-Core Simulation (MCS)). Given an HPO library that can run
multiple workers concurrently, if our wrapper simulates an asynchronous optimization
using multiple workers concurrently, we generally call such a simulation “multi-core
simulation (MCS)”.

Definition 15 (Single-Core Simulation (SCS)). Given an HPO library that has the
ask-and-tell interface, if our wrapper simulates an asynchronous optimization for
multiple workers using only a single worker, we call such a simulation “single-core
simulation (SCS)”.

Although we discuss the details later, we do not have to use multiple workers
to simulate an asynchronous optimization on a zero-cost benchmark if an HPO
library has the ask-and-tell interface. In other words, SCS is a multithreading- and a
multiprocessing-free simulation. Furthermore, we also use the following terminology:

Definition 16 (One-to-One Exchange). During each sampling, only one worker is
free. More formally, w̃(N) = 0 holds for an arbitrary N ∈ Z+ \ [P].

Note that this terminology stems from the fact that one result, but not multiple
results, is exchanged with one HP configuration at each query.

Given the terminologies, we first describe the wrapper algorithms for MCS to answer
to RQ1 and show the validity of the algorithms. After the descriptions, we discuss the
limitations of MCS and introduce SCS which is faster and free from multi-core-related
issues to answer to RQ3. To validate the algorithms, we assume the following:

21

Assumption 1. During an experiment, the overheads except for a sampling take 0

seconds.

More specifically, we ignore the overheads caused by communication between workers
and a query from zero-cost benchmarks. Although this is not practically correct, these
overheads take milliseconds and they are negligible compared to an actual runtime
τ̃ and a sampling time t̃. In the next chapter, we empirically test our algorithm to
guarantee the behavior of our algorithms. Furthermore, we assume the following:

Assumption 2. Given a measure space (R+,B+, µ) where B+ is the Borel body
over R+ and µ : B+ → R≥0 is the Lebegue measure, the probability measure of
runtime τ̃ is 0 µ-a.e. for an arbitrary HP configuration x ∈ X . More specifically,
P[τ̃ = c] = 0 µ-a.e. for an arbitrary choice of (x, c) ∈ X × R+.

Roughly speaking, this assumption implies that when we run a provided objective
function with a specific HP configuration x multiple times, none of them exhibits
exactly the same runtime.

4.1. Algorithm for Cheap Optimizer

The algorithm in this section relies on the formulation in Section 2.2.1 and this
formulation assumes that a sampling time t̃ is almost zero. We first show the
following theorem:

Corollary 1. For an arbitrary pair (p, p′) ∈ [P]× [P] (p 6= p′) and a positive integer
N ∈ Z+ \ [P − 1], T (N)

p 6= T
(N)
p′ holds almost surely.

Corollary 1 states that there is only one free worker at the moment of each sampling
once we finish the initialization. In other words, one-to-one exchange (see Def. 16)
holds for cheap optimizers. Note that if N < P , some of T (N)

p are obviously zero.

Proof. First of all, if P = 1, the statement is obviously true because there exists no
pair (p, p′) ∈ [1] × [1] such that p 6= p′, so we check the statement for P > 1. To

22

prove the corollary, we focus on the simulated runtime of the p-th worker and the
p′-th worker. For simplicity, we define the following for the proof:

I(N)
p := {i(1)p , i(2)p , . . . }, and

I(N)
p′ := {i(1)p′ , i

(2)
p′ , . . . }

(4)

where 1 ≤ i(1)p < i
(2)
p < · · · ≤ N and 1 ≤ i(1)p′ < i

(2)
p′ < · · · ≤ N . From Assumption 2,

P[τ̃ (i
(1)
p) 6= τ̃

(i
(1)

p′)
] = 0 µ-a.e. holds. Assume P[

∑k
j=1 τ̃

(i
(j)
p) 6= τ̃

(i
(1)

p′)
] = 0 µ-a.e. holds

for a positive integer k. Obviously, τ̃ (i
(1)

p′)−
∑k

j=1 τ̃
(i

(j)
p) is a constant real number, and

hence the same equation holds for k + 1 as well. Due to the mathematical induction

and Assumption 2, P[
∑k

j=1 τ̃
(i

(j)
p) 6= τ̃

(i
(1)

p′)
] = 0 µ-a.e. holds for an arbitrary positive

integer k.

Now, we see k as a fixed integer and assume P[
∑k

j=1 τ̃
(i

(j)
p) 6=

∑k′

j=1 τ̃
(i

(j)

p′)
] = 0 µ-a.e.

holds for a positive integer k′. In the same vein,
∑k′

j=1 τ̃
(i

(j)

p′)−
∑k

j=1 τ̃
(i

(j)
p) is obviously

a constant real number. Due to the mathematical induction and Assumption 2,

P[
∑k

j=1 τ̃
(i

(j)
p) 6=

∑k′

j=1 τ̃
(i

(j)

p′)
] = 0 µ-a.e. holds for an arbitrary positive integer k′.

This completes the proof. �

Using Corollary 1, we can guarantee the following theorem:

Theorem 1. Given P parallel workers and a positive integer N ∈ Z+ \ [P], the size
of a set of observations is almost surely N − P when we sample the N -th sample.

This theorem states that we can assume one-to-one exchange setup for cheap opti-
mizers.

Proof. Due to the assumption of the sampling time t̃(N) being zero, the size of a set
of observations is zero if N ≤ P . When N = P + 1, at least one worker must be
available, so the size of the set of observations is at least 1. Since the (P + 1)-th
sampling happens at T (P)

min := minp∈[P] T
(P)
p , which is a constant value, the set size

of argminp∈[P] T
(P)
p is almost surely 1 based on Corollary 1, so the size of the set

of observations is almost surely 1. Assume the size of the set of observations is
almost surely k − P when we sample the k-th sample for k > P . Since the set size
of argminp∈[P] T

(k+1)
p is almost surely 1 based on Corollary 1 and the size of the set

23

of observations is almost surely k − P , the size of the set of observations is almost
surely k − P + 1 for N = k + 1. This completes the proof. �

Using Theorem 1, the p-th worker needs to:

1. wait till p = argminp′∈[P] T
(N)
p′ satisfies,

2. receive x(N+1) and fetch the corresponding result (f̃ (N+1), τ̃ (N+1)) from a zero-
cost benchmark 1,

3. add τ̃ (N+1) to its own cumulative runtime T (N)
p and store a(N+1) if it is the

continual setup,

4. return the result (x(N+1), f̃ (N+1), τ̃ (N+1)) to the optimizer once
p = argminp′∈[P] T

(N ′)
p′ is satisfied, and

5. replace N with N ′ and go back to 2.

Each worker needs to know T
(N)
p from the other worker and available intermediate

states from the past in this scenario, so this information must be shared somehow.
If libraries spawn workers in the application side, we do not have access to the host
module of child processes or child threads. Therefore, the information share must
rely on either file system or a server. In our wrapper, we use file system because of
its simplicity. Algorithm 1 shows the pseudocode of our wrapper in this scenario.
Although our theory assumes that a sampling time t̃(N) is zero, this is not practically
correct and we consider the sampling time. Under the assumption of the one-to-one
exchange setup, the (N + 1)-th waiting time is computed as follows:

w̃(N+1) = max

{
0, min

p′∈[P]
T
(N−1)
p′ + w̃(N) + t̃(N)︸ ︷︷ ︸

The end of the latest sampling

− min
p′∈[P]

T
(N)
p′

}
.

(5)

If an optimizer is really cheap, w̃(1) = 0 and t̃(1) = 0 hold, so w̃(N) is always zero.
Suppose p = argminp′∈[P] T

(N)
p′ holds, then the simulated runtime for the p-th worker

before the sampling will be:

T (N)
p + w̃(N+1) = max

{
T (N)
p , min

p′∈[P]
T
(N−1)
p′ + w̃(N) + t̃(N)

}
. (6)

1If it is an evaluation restart, we use a loaded intermediate state to calibrate the exact runtime.

24

Hence, the end of the next sampling will be:

T new
now := T (N)

p + w̃(N+1) + t̃(N+1)

= max

{
T (N)
p , min

p′∈[P]
T
(N−1)
p′ + w̃(N) + t̃(N)

}
+ t̃(N+1)

= max{T (N)
p , T old

now}+ t̃(N+1).

(7)

Note that the following theorem upper-bounds the waiting time:

Theorem 2. Suppose the sampling time is upper-bounded by t̃max, i.e. ∀N ∈
Z+, t̃

(N) ≤ t̃max, then the waiting time satisfies w̃(N) ≤ (P − 1)t̃max for an arbi-
trary N ∈ Z+.

Proof. In the worst case, a worker needs to wait for at most P −1 samplings after the
worker was appended to the sampling waiting list because the sampling waiting list
is first-in-first-out and the sampling waiting list could have the list length of at most
P . Therefore, the waiting time is at most (P − 1)t̃max. This completes the proof. �

This theorem states that if t̃(N) is really small, w̃(N) is also small, and one-to-one
exchange is practically acceptable in terms of the simulated runtime reproduction.
Furthermore, the following theorem holds:

Theorem 3. If w̃(n) = 0 for an arbitrary n ∈ [N], the p-th worker does not have to
know sampling times for the other workers to precisely compute T (N)

p .

Proof. From the assumption of w̃(n) = 0 for an arbitrary n, the following is always
true:

min
p′∈[P]

T
(n−1)
p′ + t̃(n) − min

p′∈[P]
T
(n)
p′ ≤ 0. (8)

It implies that the update in Eq. (7) for the p-th worker requires only T (n)
p and t̃(n+1).

Furthermore, the update from T
(n)
p to T (n+1)

p only requires T (n)
p , t̃(n+1), and τ̃ (n+1) if

n+ 1 ∈ I(N)
p and if n+ 1 /∈ I(N)

p , T (n+1)
p = T

(n)
p . Since the update of T (n)

p does not
require t̃(n) for all n /∈ I(N)

p , the p-th worker does not have to know sampling times
for the other workers and this completes the proof. �

25

Algorithm 1 Automatic Waiting Time Scheduling Wrapper (see Figure 3 as well)

1: function Worker(x(N+1),a(N+1))
2: Get intermediate state s(N+1) := (τ̃ , T,a) = S.get(x(N+1), (0, 0,a(N+1)))
3: if s(N+1) is invalid for (x(N+1),a(N+1)) and T (N)

p + t̃(N+1) then
4: . Condition 1: s(·) must be T ≤ T (N)

p + t̃(N+1)

5: . Condition 2: The new fidelity input has higher fidelity
6: s(N+1) ← (0, 0,a(N+1))

7: Query the result (f̃ (N+1), τ̃ (N+1))
8: Calibrate runtime τ̃ (N+1) ← τ̃ (N+1) − τ̃
9: . Tnow already takes the waiting time w̃(N+1) into account

10: Tnow ← max(Tnow, T
(N)
p) + t̃(N+1)

11: T
(N+1)
p ← Tnow + τ̃ (N+1), T

(N+1)
p′ ← T

(N+1)
p′ (p′ 6= p)

12: . k is the number of results from the other workers appended during the wait
13: . t̃(N+k+2) is available only if T (N+1)

p 6= minp′∈[P] T
(N+k+1)
p′

14: Wait till T (N+1)
p ≤ minp′∈[P] T

(N+k+1)
p′ + t̃(N+k+2) satisfies

15: Record the intermediate state S[x(N+1)] = (τ̃ (N+1), T
(N+1)
p ,a(N+1))

16: return f̃ (N+1)

π (an optimizer policy), get_n_results (a function that returns the number of
recognized results by our wrapper. The results include the ones that have not
been recognized by the optimizer yet.).
D ← ∅, T (0)

p ← 0, Tnow ← 0,S ← dict()
17: while the budget is left do
18: . This codeblock is run by P different workers in parallel
19: N ← get_n_results()
20: Get x(N+1) ∼ π(·|D) and a(N+1) with t̃(N+1) seconds
21: f̃ (N+1) ← worker(x(N+1),a(N+1))
22: D ← D ∪ {(x(N+1), f̃ (N+1))}

This theorem leads to an important benefit of the one-to-one exchange setup, which
enables correct simulations even with a benchmark that causes a large query overhead
because each worker can recognize overheads in its own process. Note that a query
overhead must be negligible for an expensive optimizer as discussed in Theorem 4.
However, if any one of w̃(N) takes a positive value, the size of the set of observations D
at each query will not be correct and it affects the optimization behavior. Therefore,
we discuss the implementation for expensive optimizers, i.e. t̃(N) � 0 in the next
section.

26

4.2. Algorithm for Expensive Optimizer

The algorithm in this section relies on the formulation in Section 2.2.2 and this
formulation assumes that a sampling time t̃ is non-zero. As mentioned in Section 2.2.2,
minp∈[P] T

(N)
p + t̃(N+1) could be larger than T (N)

p′ even if minp∈[P] T
(N)
p < T

(N)
p′ . Hence,

the size of a set of observations at the (N + 1)-th sampling becomes:

N − P +
P∑

p=1

I
[

min
p′∈[P]

T
(N)
p′ + w̃(N+1) ≥ T (N)

p

]
. (9)

Unlike the algorithm for cheap optimizers, the p-th worker may need to release its
result without waiting for becoming p = argminp′∈[P] T

(N)
p′ because minp′∈[P] T

(N)
p′ +

w̃(N+1) ≥ T
(N)
p may hold while waiting for another sampling. It implies that we

cannot assume the one-to-one exchange setup. As we release the p-th worker once
minp′∈[P] T

(N)
p′ + w̃(N+1) ≥ T (N)

p holds, each sampling will actually wait for the exact
waiting time and we do not have to calculate the waiting time. Therefore, we can
simply calculate the end of the sampling time by:

Tnow = T (N)
p + w̃(N+1) + t̃(N+1)︸ ︷︷ ︸

Actual waiting time since the worker release

. (10)

Our wrapper in this scenario works identically as Algorithm 1 except Line 13 in
Algorithm 1 is replaced with Algorithm 2. While the waiting time calculation becomes
simpler, the waiting algorithm for each worker becomes slightly more complicated.
Furthermore, this algorithm incurs some problems: (1) the racing condition that
makes our wrapper incapable of handling a benchmark with a large query overhead
and (2) more frequent access to the file system. Problem 1 leads to the following
theorem:

Theorem 4. Suppose we use Algorithm 2, precise simulation cannot be guaranteed
if a benchmark query is non negligible.

Proof. Suppose the number of parallel workers takes P = 3, a sampling time is always
t̃(n) = 10, and a query overhead T is 25. Assume we will fetch the k-th sample x(k),
the k-th runtime is τ̃ (k) = 3, and all three workers finished their latest evaluations at
the simulated runtime of T . In other words, T (k−1)

p = T for all p ∈ [3].

1. The k-th sampling for Worker 1 starts at T ,

27

2. The sampling for Worker 1 finishes at Tnow ← T + 10,

3. The query for Worker 1 starts at Tnow,

4. The (k + 1)-th sampling for Worker 2 starts at Tnow,

5. The sampling for Worker 2 finishes at Tnow ← T + 20,

6. The (k + 2)-th sampling for Worker 3 starts at Tnow, and

7. The query for Worker 1 comes at T + 25.

However, Worker 1 should have received the k-th result at the simulated runtime
of T + 13, and hence the k-th result must have been considered for the (k + 2)-th
sampling for Worker 3. Although we could avoid this contradiction if Algorithm 2 has
the control to let each sampling wait until the latest query comes, the only control our
wrapper has is the result release timing and sampling timing cannot be controlled by
Algorithm 2. Therefore, this example is the counterexample of precise simulation and
we cannot surely guarantee the correctness of simulations when we use a benchmark
with a non-negligible query overhead. This completes the proof. �

This theorem is the reasoning behind Problem 1. More specifically, this problem
comes from get_n_results and get_p_now in Algorithm 2 which are the functions
that require communication between workers. Our wrapper first knows that sampling
for a specific worker finishes, i.e. a change in pnow, and then receives a result, i.e.
a change in N after a benchmark query. As the timer for sampling is still running,
we need to register for the sampling finish immediately without waiting for the
registration for the queried result. However, this algorithm causes a racing condition
if a benchmark query overhead is large.

Problem 2 comes from the separated information registrations by the two functions.
Each worker needs to check file system twice at each iteration in Algorithm 2 while
Algorithm 1 checks only once at each iteration.

4.3. Limitations of Multi-Core Simulation

As discussed in Section 4.1 and Section 4.2, we provided two types of MCS wrapper
algorithms:

28

Algorithm 2 Waiting Algorithm for Non One-to-One Exchange Setup
∆t (sleeping time till the next check.), get_n_results (a function that returns
the number of recognized results by our wrapper. The results include the ones
that have not been recognized by the optimizer yet.), get_p_now (a function that
returns the index of the worker that will receive the latest sampling. In principle,
the index of the free worker with the smallest T (N)

p .).
1: . t is used to measure sampling duration for the p-th worker at each iteration
2: . pnewnow may not be argminp′∈[P] T

(N)
p′ depending on benchmark query overhead

3: N ← get_n_results(), pnewnow ← get_p_now(), t← 0
4: . tnow is the current waiting time for the pnewnow-th worker at this moment
5: Tnow ← T

(N)
pnewnow

+ tnow

6: while T (N)
p 6= T

(N)
min (:= minp′∈[P] T

(N)
p′) do

7: . pnewnow-th worker is waiting for the next sampling (p 6= pnewnow)
8: if T (N)

p ≤ T (N)
pnewnow

+ t then
9: break

10: Nnew ← get_n_results()
11: if N = Nnew and poldnow = pnewnow then
12: . The latest sampling is in progress
13: t← t+ ∆t
14: else
15: Tnow ← max{Tnow + t, T

(Nnew)
pnewnow

}, N ← Nnew, p
old
now ← pnewnow, t← 0

16: time.sleep(∆t)
17: return . The p-th worker finishes the wait

• Cheap Optimizer: the algorithm with the assumption of one-to-one exchange,
i.e. ∀N ∈ Z+, w̃

(N) = 0, shown in Algorithm 1, and

• Expensive Optimizer: Algorithm 1 which uses Algorithm 2 in Line 13.

While both algorithms support a direct usage of multi-core HPO and they only
require minimal coding to use (see Appendix B for the actual usage), there are some
drawbacks due to the parallel processing nature. The first algorithm is guaranteed to
theoretically work perfectly and it works even with a large benchmark query overhead
as long as a waiting time w̃(N) is always zero. However, some optimizers obviously
cause a waiting time. The second algorithm mitigates the issue in the first algorithm,
but a large query overhead causes the racing condition and simulations fail if we use
such a benchmark. For example, we observed dask.distributed.Client.scatter,
which allows us to keep a shared dataset in memory, causes a hang when using
JAHS-Bench-201 [6] with 4 workers. In this case, users need to load surrogate models

29

Algorithm 3 Single-Core Simulation (SCS) Using the Ask-and-Tell Interface

opt (an optimizer instance that has methods opt.ask and opt.tell.), opt.ask
(a sampling method that returns an HP configuration x and optionally a set of
arguments a. We only show non-continual setup for simplicity.), opt.tell (a
method to report a result (x, f̃)) to opt.

1: Tnow ← 0,W ← [None] ∗ P
2: for N = 1, 2, . . . do
3: . This codeblock is run by only 1 worker unlike Algorithm 1
4: p← argminp′∈[P] T

(N)
p

5: x(N+1) ←opt.ask() . The sampling time is t̃(N+1)

6: Query f̃ (N+1), τ̃ (N+1) using x(N+1) and record to W[p] ← (x(N+1), f̃ (N+1))

7: . Note that w̃(N+1) = max{0, Tnow − T (N)
p }

8: Tnow ← max{T (N)
p , Tnow}+ t̃(N+1), T

(N+1)
p ← Tnow + τ̃ (N+1)

9: . Skip if W[p] is None
10: opt.tell(W[p]) and W[p] ← None for all p′ that satisfies T (N+1)

p′ ≤ Tnow

at every query and it caused a 20-second overhead in our environment. Furthermore,
there are some common issues that we did not discuss earlier:

• related to a large query overhead, individual query results for a tabular bench-
mark should be stored separately rather than stored as a big file 2 so that we
can avoid incompatibility due to the large query and sampling overheads,

• these algorithms are not available for Windows OS as fcntl module, which is
used for the file lock to prevent contamination, does not support Windows OS,

• simulation fails to reproduce the exact result if the initial sampling cost for P
workers is more expensive than minp∈[P] T

(P)
p

3,

• in general, a multi-core optimization is more likely to fail than a single-core
optimization and MCS could suffer from HPO libraries-related vulnerabilities,
e.g. scalability w.r.t. the number of workers P , and

• users must specify the temporary directory when using on a computer cluster
to avoid slow down due to high I/O usage.

2For example, if a tabular benchmark has {(xn, f̃n, τ̃n)}Nall
n=1, these results should not be stored as

one big file, but rather stored as Nall files each with a result {(f̃n, τ̃n)}. If we need to load the
whole data at every query, the loading will cause a significant overhead, but it can be avoided if
we store each result individually as we need to load only one small file at every query.

3To be fair, it does not make sense to use P workers in this case as this situation implies that we
cannot fill out all the workers and it will be a waste of resources.

30

Table 1.: The advantages and disadvantages of each wrapper algorithm. Note that
© implies that it is an advantage and × implies that it is a disadvantage.
“Actual Multi-Core Handling” means that we can directly run multi-core
optimization natively supported in an HPO library.

Algorithm 1 Algorithm 3One-to-One Non One-to-One

Runtime (File System Access) × × ©
Query Overhead Handling © × ©
Sampling Overhead Handling × © ©
Random Seed Effect © © ×
Windows Support × × ©
Scalability w.r.t. P × × ©
Actual Multi-Core Handling © © ×
Actual Multi-Core Coding × × ©
Any Optimizer Interface © © ×

Our wrapper has another algorithm to address these issues in exchange for another
constraint and we discuss the detail in the next section.

4.4. Algorithm for Ask-and-Tell Interface

As discussed in the previous section, while MCS directly allows users to apply existing
HPO libraries, there are various issues. These problems can be addressed when we
use SCS (see Def. 15). SCS enforces the ask-and-tell interface to HPO libraries, but as
long as HPO libraries take the interface, we can simulate asynchronous optimization
in a safer and more stable way. Additionally, HPO libraries do not even have to have
a multi-core implementation to run simulations. For example, although HEBO [13]
does not have its multi-core implementation, we could simulate its results as HEBO
has the ask-and-tell interface. Algorithm 3 shows the algorithm for SCS. The key
point of the SCS is in Line 10, which the ask-and-tell interface makes possible. As
Algorithm 3 allows us to schedule the return timing of each result to each worker only
with a single core, experiments will be free from any parallel processing-related issues.
The downsides of this algorithm are (1) it enforces HPO libraries to implement the
ask-and-tell interface, (2) it may fail to reproduce the stochasticity caused by random
seeds as discussed in Section 5.3, and (3) it may miss computational bottlenecks

31

caused by high memory consumption due to expensive parallel evaluations of HP
configurations. In Table 1, we summarize the advantages and disadvantages of each
wrapper algorithm.

32

5. Empirical Algorithm Validation on
Test Cases

In this chapter, we discuss the validity of our algorithms discussed in Chapter 4 using
several test cases to answer to RQ2. Throughout this chapter, we use the number of
workers P = 4. We also note that our wrapper behavior depends only on returned
runtime at each iteration in a non-continual setup and it is sufficient to consider only
runtime τ̃ (n) and sampling time t̃(n) + w̃(n) at each iteration. Therefore, we use a so-
called fixed-configuration sampler, which defines a sequence of HP configurations and
their corresponding runtimes at the beginning and samples from the fixed sequence
iteratively. More formally, assume we would like to evaluate N HP configurations,
then the sampler first generates {τ̃ (n)}Nn=1 and one of the free workers receives an HP
configuration at the n-th sampling that leads to the runtime of τ̃ (n). Furthermore,
we use two different strategies during sampling to simulate the sampling cost:

1. Expensive Optimizer: that intentionally sleeps for c(|D|+ 1) seconds before
giving τ̃ (n) to a worker where |D| is the size of a set of observations and c ∈ R+

is a proportionality constant, and

2. Cheap Optimizer: that gives τ̃ (n) to a worker immediately without sleeping.

In principle, the results of each test case are uniquely determined by a pair of an
optimizer and a sequence of runtimes. Hence, we define such pairs at the beginning of
each section. Note that we use the one-to-one exchange setup for “Cheap Optimizer”
and non one-to-one exchange setup for “Expensive Optimizer”.

5.1. Visual Verification on Small Handcrafted Test Cases

In this section, we will check our wrapper on small handcrafted cases. To test our
wrapper, we use the following three test cases:

33

1. the cheap optimizer with {τ̃ (n)} = {100, 40, 30, 20, 20, 30, 40, 20, 20, 30, 20, 40, 30, 20,

30, 20, 30, 40, 30, 10},

2. the expensive optimizer with {τ̃ (n)} = {40, 60, 60, 50, 50, 30, 30, 30}, and

3. the expensive optimizer with {τ̃ (n)} = {50, 130, 80, 160, 130, 70, 20, 30}.

Note that the expensive optimizer uses c = 10. The first setup is the most basic setup
and it should work as follows:

1. Worker 1 gets τ̃ (1) = 100, Worker 2 gets τ̃ (2) = 40, Worker 3 gets τ̃ (3) = 30,
and Worker 4 gets τ̃ (4) = 20 after the initial sampling (T (4)

: = {100, 40, 30, 20}),

2. Worker 4 returns its result and receives τ̃ (5) = 20 (T (5)
: = {100, 40, 30, 40}),

3. Worker 3 returns its result and receives τ̃ (6) = 30 (T (6)
: = {100, 40, 60, 40}),

4. Worker 2 returns its result and receives τ̃ (7) = 40 (T (7)
: = {100, 80, 60, 40}),

5. Worker 4 returns its result and receives τ̃ (8) = 20 (T (8)
: = {100, 80, 60, 60}), and

6. We repeat till the end and we expect to have the simulated minimum runtime of
{20, 30, 40, 40, 60, 60, 80, 80, 90, 100, 100, 120, 120, 120, 130, 140, 150, 150, 160, 160}
at each iteration, which was accurately obtained in Figure 4 (Left).

The second setup requires our wrapper to wait for samplings for the other workers if
necessary and it should work as follows:

1. Worker 1 gets τ̃ (1) = 40 after t̃(1) = 10, Worker 2 gets τ̃ (2) = 60 after w̃(2) = 10

and t̃(2) = 10, Worker 3 gets τ̃ (3) = 60 after w̃(3) = 20 and t̃(3) = 10, Worker 4
gets τ̃ (4) = 50 after w̃(4) = 30 and t̃(4) = 10, and update to Tnow ← w̃(4) + t̃(4) =

40 (T (4)
: = {50, 80, 90, 90}),

2. Worker 1 returns its result (|D| = 1), receives τ̃ (5) = 50 after w̃(5) = 0 and
t̃(5) = 20, and update to Tnow ← T

(4)
1 + t̃(5) = 70 (T (5)

: = {120, 80, 90, 90}),

3. Worker 2 returns its result (|D| = 2), receives τ̃ (6) = 30 after w̃(6) = 0

(∵ T (5)
2 = 80 > Tnow) and t̃(6) = 30, and update to Tnow ← T

(5)
2 + t̃(6) = 110

(T (6)
: = {120, 140, 90, 90}),

4. Worker 3 and Worker 4 return their results (|D| = 4) and wait till the end of
the latest sampling (Tnow = 110),

34

0 50 100 150
1

2

3

4
W

or
ke

r I
nd

ex
Cheap Optimizer

0 100 200
Simulated Runtime [s]

Expensive Optimizer

0 100 200

Expensive, But No Waiting

Sampling Start
Evaluating

Sampling End
Sampling

Result Return
Waiting for Sampling Start

Figure 4.: The results of the experiments on small handcrafted cases obtained by our
wrapper. The x-axis shows the simulated runtime of each experiment and
the y-axis has four horizontal lines, which represent the timelines for each
worker. We can see that our wrapper gives the expected timelines for each
worker. Left: the test case with the cheap optimizer. As discussed in
the text, the order of each HP configuration is correct. Center: the test
case with the expensive optimizer and a sequence of HP configurations
that causes waiting before some samplings. As expected, each sampling
waits for the end of the previous sampling. Right: the test case with
the expensive optimizer and a sequence of HP configurations that does
not cause any waiting. As expected, each sampling starts immediately
after each evaluation.

5. Worker 3 receives τ̃ (7) = 30 at Tnow + t̃(7) = 160 where t̃(7) = 50 because of
|D| = 4 and update to Tnow ← Tnow + t̃(7) = 160 (T (7)

: = {120, 140, 190, 90}),

6. Worker 1 and Worker 2 return their results during the sampling above (|D| = 6),

7. Worker 4 receives τ̃ (8) = 30 at Tnow + t̃(8) = 230 where t̃(8) = 70 because of
|D| = 6 (T (8)

: = {120, 140, 190, 260}).

This result matches with Figure 4 (Center). Finally, the last setup also uses the
expensive sampler while each worker fortunately does not have to wait for samplings
for the other workers at all. This example works similarly to the other two setups
and we obtained the expected result in Figure 4 (Right) by our wrapper.

5.2. Quantitative Verification on Random Test Cases

We tested our wrapper on small test cases and visually verified our algorithms in
the previous section. In this section, we test our algorithms quantitatively and also

35

0

50

Uniform Exponential

0 20 40 60 80
0

50

Pareto

With Our Wrapper Without Our Wrapper
0 20 40 60 80

Log Normal

(a) Cheap optimizer

0

50

Uniform Exponential

0 20 40 60 80
0

50

Pareto

With Our Wrapper Without Our Wrapper
0 20 40 60 80

Log Normal

(b) Expensive optimizer with c = 5× 10−3

0

50

Uniform Exponential

0 20 40 60 80
0

50

Pareto

With Our Wrapper Without Our Wrapper
0 20 40 60 80

Log Normal

(c) Expensive optimizer with c = 5× 10−2

Figure 5.: The return order verification results. When we use our wrapper, the red
dots are obtained. If all the dots are aligned on y = x, it implies that
the return order in a simulation with our wrapper and that in its naïve
simulation perfectly match. As expected, the red dots completely overlap
with y = x. See the text for the plot details.

empirically validate Theorem 1 and Theorem 3. For the tests, we generated test cases
{τ̃ (n)}Nn=1 where N = 100 from the following distributions:

1. (Uniform): T
c ∼ U(0, 2),

2. (Exponential): T
c ∼ Exp(1),

3. (Pareto): T+1
c ∼ P(α = 1), and

4. (LogNormal): ln
√
eT
c ∼ N (0, 1),

where T is the probability variable of the runtime τ and we used c = 5. Each distri-
bution uses the default setups of numpy.random and we calibrated each distribution
except for the Pareto distribution so that the expectation becomes 5. Furthermore,
we used (1) the cheap optimizer, (2) the expensive optimizer with c = 5× 10−3, and
(3) the expensive optimizer with c = 5 × 10−2. As N = 100, the worst sampling

36

duration for Optimizers 2 and 3 will be 0.5 and 5 seconds. Since the expected runtime
for each evaluation is 5 seconds, Optimizer 2 is a slightly expensive optimizer and
Optimizer 3 is a very expensive optimizer. As we can expect a moderate amount of
waiting time for Optimizer 2 and a lot of waiting time for Optimizer 3, it is more
challenging to yield the precise return order and the precise simulated runtime for
both setups. Hence, we would like to verify if our wrapper yields the precise return
order and the precise simulated runtime using these setups.

First, we check return orders. We performed the following procedures to check
whether the obtained return orders are correct:

1. Run an optimization using naïve simulation (see Def. 13) and obtain {τNS
n }Nn=1,

2. Run an optimization using our wrapper (MCS) and obtain {τMCS
n }Nn=1,

3. Calculate the permutation {in}Nn=1 of [N] such that {τNS
n }Nn=1 = {τMCS

in
}Nn=1

holds, and

4. Plot {(n, in)}Nn=1 (see Figure 5).

If the simulated return order is correct, the plot {(n, in)}Nn=1 will look like y = x,
i.e. (n, n) for all n ∈ [N], and we expect to have such plots for all the experiments.
Ultimately, our wrapper is unnecessary if we yield the exact order without our wrapper,
so we also ran optimizations without our wrapper, which is, roughly speaking, Figure 2
(Left) without time.sleep in Line 4, for the comparison.

Figure 5 shows the results and the red dots represent the results using our wrapper.
According to the figures, our wrapper successfully got y = x for all the setups while
we did not get y = x without our wrapper. Although we can see the trend such that
return orders become accurate at the late stage of an optimization except for the
Pareto distribution even without our wrapper, our wrapper is essential to precisely
simulate results. An interesting finding lies in the results for the Pareto distribution.
As the Pareto distribution has a heavy tail, it often generates relatively large values,
e.g. most samples exhibited around 5 seconds, but we could observe some samples had
500 seconds. Such samples locate far under the red lines in each figure for the Pareto
distribution. Since optimizers without our wrapper will be immediately notified of
the results for such samples, most blue dots locate slightly above the red lines and it
completely confuses simulations. For example, HPOBench [4] also has this property
and it is worth noting that our wrapper can overcome the edge case.

37

100

101

102

Uniform Exponential

20 40 60 80 100100

101

102

Pareto

Naïve Our Wrapper Abs. Difference ×103

20 40 60 80 100

Log Normal

of Evaluations

Si
m

ul
at

ed
 R

un
tim

e
m

in
T(N

)
p

(a) Cheap optimizer

100

101

102

Uniform Exponential

20 40 60 80 100100

101

102

Pareto

Naïve Our Wrapper Abs. Difference ×103

20 40 60 80 100

Log Normal

of Evaluations

Si
m

ul
at

ed
 R

un
tim

e
m

in
T(N

)
p

(b) Expensive optimizer with c = 5× 10−2

100

101

102

Uniform Exponential

20 40 60 80 100100

101

102

Pareto

Naïve Our Wrapper Abs. Difference ×103

20 40 60 80 100

Log Normal

of Evaluations

Si
m

ul
at

ed
 R

un
tim

e
m

in
T(N

)
p

(c) Expensive optimizer with c = 5× 10−3

Figure 6.: The verification of the simulated runtime. The red dotted lines show
the simulated runtime of our wrapper and the black solid lines show the
actual runtime of the naïve simulation. The blue dotted lines show the
absolute difference between the simulated runtime of our wrapper and
the actual runtime of the naïve simulation multiplied by 1000 to fit in
the same scale as the other lines. The red dotted lines and the black
solid lines are expected to completely overlap and the blue lines should
exhibit zero ideally.

Next, we check whether the simulated runtimes at each iteration were correctly
calculated using the same setups. Figure 6 presents the simulated runtimes for
each setup. As can be seen in the figures, our wrapper got a relative error of
1.0× 10−5 ∼ 1.0× 10−3. Since the expectation of runtime is 5.0 seconds except for
the Pareto distribution, the error was approximately 0.05 ∼ 5.0 milliseconds and this
value comes from the communication overhead in our wrapper. This result empirically
supports Theorem 3. Although the error is already sufficiently small, the relative
error becomes much smaller when we use more expensive benchmarks that will give
a large runtime τ̃ (n).

Finally, we check the size of the set of observations |D| at each iteration using the
same setups. This experiment is also important because many optimizers such as

38

0

50

100
Uniform: Abs. Diff Sum 0 Exponential: Abs. Diff Sum 0

20 40 60 80 100
0

50

100
Pareto: Abs. Diff Sum 0

Naïve Our Wrapper Abs. Difference

20 40 60 80 100

Log Normal: Abs. Diff Sum 0

of Evaluations

Si
ze

 o
f O

bs
er

va
tio

ns
 |

|

(a) Cheap optimizer

0

50

100
Uniform: Abs. Diff Sum 0 Exponential: Abs. Diff Sum 0

20 40 60 80 100
0

50

100
Pareto: Abs. Diff Sum 0

Naïve Our Wrapper Abs. Difference

20 40 60 80 100

Log Normal: Abs. Diff Sum 0

of Evaluations

Si
ze

 o
f O

bs
er

va
tio

ns
 |

|

(b) Expensive optimizer with c = 5× 10−3

0

50

100
Uniform: Abs. Diff Sum 0 Exponential: Abs. Diff Sum 0

20 40 60 80 100
0

50

100
Pareto: Abs. Diff Sum 0

Naïve Our Wrapper Abs. Difference

20 40 60 80 100

Log Normal: Abs. Diff Sum 0

of Evaluations

Si
ze

 o
f O

bs
er

va
tio

ns
 |

|

(c) Expensive optimizer with c = 5× 10−2

Figure 7.: The size of the set of observations over time. The x-axis shows the
number of HP config evaluations and the y-axis shows the size of the set
observations |D|. The red dotted lines are for the results obtained by our
wrapper and the black solid lines are for the results obtained by the naïve
simulation. The blue dashed lines show the absolute difference between
these two values. We added the summation of the absolute difference in
the titles of each subfigure and the value was zero for all the cases.

Bayesian optimization use the set of observations D to train a surrogate model at
each iteration and a wrong set of observations may underestimate the performance
of Bayesian optimization. Figure 7 presents the results for each setup. As can be
seen, our wrapper got perfectly identical results to the naïve simulation and we could
verify our implementation. Especially, the results for the cheap optimizer empirically
support Theorem 1.

39

10 2 100 102

2.5

2.0

1.5

1.0

0.5

0.0
Deterministic Objective

Actual Runtime (MCS)
Simulated Runtime (MCS)

Actual Runtime (SCS)
Simulated Runtime (SCS)

Actual Runtime (Naïve)

6721x
134435x

10 2 100 102

Noisy Objective

6721x
134437x

Wall-Clock Time [s]

C
um

ul
at

iv
e

M
in

im
um

 F
un

ct
io

n
Va

lu
e

Figure 8.: The verification of actual runtime reduction. The x-axis shows the wall-
clock time and the y-axis shows the cumulative minimum objective value
during optimizations. Naïve simulation (black dotted line) serves the
correct result and the simulated results (red/blue dotted lines) for each
algorithm should ideally match the result of the naïve simulation. Actual
runtime (red/blue solid lines) show the runtime reduction compared
to the simulated results and it is better if we get the final result as
quick as possible. Left: optimization of a deterministic multi-fidelity
6D Hartmann function. The simulated results for both MCS and SCS
coincide with the correct result while both of them showed significant
speedups. Right: optimization of a noisy multi-fidelity 6D Hartmann
function. While the simulated result for MCS coincide with the correct
result, SCS did not yield the same result. MCS could reproduce the
result because MCS still uses the same parallel processing procedure and
the only change is to wrap the objective function.

5.3. Performance Verification on Actual Runtime
Reduction

In the previous sections, we verified the correctness of our algorithms and we could
successfully validate our algorithms and their implementations. In this section, we
demonstrate the runtime reduction effect by our wrapper. To test the runtime
reduction, we optimized multi-fidelity 6D Hartmann 1 [7] using random search with
P = 4 workers over 10 different random seeds. In the noisy case, we added a random

1We set the runtime function so that the maximum runtime for one evaluation becomes 1 hour.
More precisely, we used 10× r(z) instead of r(z) in Appendix A.2.

40

noise to the objective function. We used both MCS and SCS in this experiment and
the naïve simulation. Figure 8 shows the result. In Figure 8 (Left), both MCS and
SCS reproduced the results by the naïve simulation perfectly while they finished
the experiments 6.7 × 103 times and 1.3 × 105 times quicker, respectively. Note
that it is hard to see, but the right side of Figure 8 (Left) has the three lines: (1)
Simulated Runtime (MCS), (2) Simulated Runtime (SCS), and (3) Actual Runtime
(Naïve), and they completely overlap with each other. SCS is much quicker than
MCS because it does not require communication between each worker via the file
system. Although MCS could reproduce the results by the naïve simulation even for
the noisy case, SCS failed to reproduce the results because the naïve simulation relies
on multi-core optimization while SCS does not use multi-core optimization and this
difference affects the random seed effect to the optimizations. However, since SCS
still reproduces the results for the deterministic case, it verifies our implementation of
SCS. From the results, we can conclude that while SCS is generally quicker because
it does not require communication via the file system, it may fail to reproduce the
random seed effect due to the fact that it wraps an optimizer by relying on the
ask-and-tell interface instead of using the multi-core implementation provided by the
optimizer.

41

6. Real-World Experiments Using
Zero-Cost Benchmarks

In this chapter, we perform MFO using various major HPO libraries. First, we show
the average rank performance of each method over time and answer to RQ4 using a
statistical test. Last but not least, while our experiments would have taken 5.8× 1010

seconds without our wrapper, our experiments took 4.3× 107 seconds in total; see
Table 2 and Appendix C.2 for more details. Note that our wrapper usage is described
in Appendix B.

6.1. Experiment Setup

In the experiments, we used the following benchmark problems:

1. the multi-fidelity version of Branin, 3D Hartmann, 6D Hartmann functions [19]
with the runtime function of 3600× r(z),

2. MLP benchmarks from HPOBench [4],

3. HPOlib [16],

4. JAHS-Bench-201 [6], and

5. LCBench [71] from YAHPOBench [72].

Note that the details are available in Appendix A. For optimizers, we used the
following:

1. random search [73] in Optuna [15] with 10 times more budgets,

2. (MFO) HyperBand [9] in HpBandSter [10] with 10 times more budgets,

3. tree-structured Parzen estimator (TPE) [74, 75] in Optuna,

43

Table 2.: Actual and simulated runtimes for total experiment runtimes. Act. is the
total actual runtime and Sim. is the total simulated runtime. × Fast
shows how many times the total actual runtime was faster.

P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

9.2e+06/ 3.0e+10/ 3.3e+03 1.1e+07/ 1.5e+10/ 1.5e+03 1.1e+07/ 7.7e+09/ 6.9e+02 1.2e+07/ 3.9e+09/ 3.2e+02

4. (MFO) BOHB (a combination of TPE and HyperBand) in HpBandSter [10],

5. HEBO (a state-of-the-art Bayesian optimization method) [13],

6. (MFO) DEHB (a combination of differential evolution and HyperBand) [11],

7. (MFO) NePS (a variant of HyperBand by default) 1, and

8. (MFO) SMAC3 (a combination of random forest-based Bayesian optimization
and HyperBand) [14].

We marked MFO methods with “(MFO)” above.

Each optimizer was run on each benchmark problem over 30 different random seeds
with different numbers of workers P ∈ {1, 2, 4, 8}. Since each MFO method uses
HyperBand internally, we consistently used η = 3, i.e. the default value of a
control parameter of HyperBand that determines the proportion of HP configurations
discarded in each round of successive halving [8]. The budget for each optimization
was fixed to 200 full evaluations and this leads to 450 function calls for HyperBand-
based methods with η = 3. Each optimizer except for HEBO was run using MCS,
but HEBO was run using SCS as HEBO does not support multi-core optimization,
but it supports the ask-and-tell interface. Note that SMAC3 could not be run on
LCBench and JAHS-Bench-201 due to a dependency issue. All the computations
for this experiment were performed on bwForCluster NEMO, which has 20 cores of
Intel(R) Xeon(R) CPU E5-2630 v4 on each computational node, and we used 1 core
of the CPU and 15GB RAM per worker. For HEBO, we used 1 core of the CPU
with 32GB RAM for all the setups. As seen in Table 2, the whole experiment could
be finished 1.3× 103 times shorter runtime. Note that since the simulated runtime
obviously becomes quicker given the same amount of budget as the number of workers

1https://github.com/automl/neps/

44

P increases, × Fast apparently worsens, but the total actual runtime became only
slightly slower (about 1.3 times) as the number of workers P increases.

We used average rank for the visualization of the performance, so we describe the
calculation method below:

1. Collect the results {{{{(xk,l,s,n, f̃k,l,s,n, Tk,l,s,n)}Nl
n=1}30s=1}Ll=1}Kk=1 where K is

the number of setups, L is the number of optimizers, s is the seed specifier, Nl is
the number of function calls for the l-th optimizer, and Tk,l,s,n is the simulated
runtime of the k-th setup using the l-th optimizer with the s-th seed up to the
n-th observations,

2. For each l ∈ [L] and k ∈ [K], compute Tmin
k,l = mins∈[30] Tk,l,s,1 and Tmax

k,l =

maxs∈[30] Tk,l,s,Nl
and log-scale time step grids {tk,l,i}100i=1 where tk,l,i := exp[log Tmin

k,l +
i−1
99 (log Tmax

k,l − log Tmin
k,l)],

3. For each i ∈ [100] and s ∈ [30], compute ni such that Tk,l,s,ni
≤ tk,l,i < Tk,l,s,ni+1

and gather as {(f̄k,l,i, tk,l,i)}100i=1 := {(meds∈[30] f̃k,l,s,ni
, tk,l,i)}100i=1 where med

calculates the median of a given set,

4. For each k ∈ [K], compute Tmax
k = maxl∈[L] T

max
k,l , Tmin

k = Tmax
k × 10−5, and

log-scale time step grids {tk,i}200i=1 where tk,i := exp[log Tmin
k + i−1

199 (log Tmax
k −

log Tmin
k)],

5. For each i ∈ [200] and l ∈ [L], compute ni such that tk,l,ni
≤ tk,i < tk,l,ni+1

and gather as {rk,l,i}200i=1 := {rank(f̄k,l,ni
, {f̄k,l′,ni

}Ll′=1)}200i=1 where rank(a,S)

calculates the ranking of a ∈ S in the set S, and

6. For each l ∈ [L], compute the average rank {r̄l,i}200i=1 := {meank∈[K]rk,l,i}200i=1.

Then we plot the trajectories {(bi, r̄l,i)}200i=1 for each optimizer l ∈ [L] where bi :=

exp[log 10−5 + i−1
199 (log 100 − log 10−5)] = 200−i

199 log 10−5 is the budget fraction used
by an optimizer. Note that the module is publicly available 2. Furthermore, we
performed the Friedman rank test for each P ∈ {1, 2, 4, 8} and compared the rankings
over each number of workers to answer to RQ4.

2See get_average_rank in http://github.com/nabenabe0928/mfhpo-simulator.

45

http://github.com/nabenabe0928/mfhpo-simulator

2

4

6

8
P = 1 P = 2

10 5 10 4 10 3 10 2 10 1 100

2

4

6

8
P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS
SMAC

10 5 10 4 10 3 10 2 10 1 100

P = 8

Used Budget Ratio (Used Budget / Max. Budget)

Av
er

ag
e

R
an

k

Figure 9.: The average rank on HPOBench.

2

4

6

8
P = 1 P = 2

10 5 10 4 10 3 10 2 10 1 100

2

4

6

8
P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS
SMAC

10 5 10 4 10 3 10 2 10 1 100

P = 8

Used Budget Ratio (Used Budget / Max. Budget)

Av
er

ag
e

R
an

k

Figure 10.: The average rank on HPOlib.

46

2

4

6

P = 1 P = 2

10 5 10 4 10 3 10 2 10 1 100

2

4

6

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

10 5 10 4 10 3 10 2 10 1 100

P = 8

Used Budget Ratio (Used Budget / Max. Budget)

Av
er

ag
e

R
an

k

Figure 11.: The average rank on JAHS-Bench-201.

2

4

6

P = 1 P = 2

10 5 10 4 10 3 10 2 10 1 100

2

4

6

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

10 5 10 4 10 3 10 2 10 1 100

P = 8

Used Budget Ratio (Used Budget / Max. Budget)

Av
er

ag
e

R
an

k

Figure 12.: The average rank on LCBench.

47

2 4 6

BOHB [2.90]
TPE [3.20]

DEHB [3.47]
HEBO [3.60]

 [7.27] Random
 [6.30] NePS
 [5.53] Hyperband
 [3.73] SMAC

P = 1
2 4 6

BOHB [2.23]
HEBO [2.67]

TPE [3.03]
SMAC [3.63]

 [7.00] Random
 [6.37] NePS
 [5.57] DEHB
 [5.50] Hyperband

P = 2

2 4 6

BOHB [2.07]
HEBO [3.13]
SMAC [3.33]

TPE [3.80]

 [7.03] Random
 [5.70] Hyperband
 [5.47] NePS
 [5.47] DEHB

P = 4
2 4 6

HEBO [2.20]
BOHB [2.23]

TPE [3.90]
SMAC [4.17]

 [6.87] Random
 [5.80] DEHB
 [5.77] NePS
 [5.07] Hyperband

P = 8

Figure 13.: The critical difference diagrams with 1/24 of the runtime budget for
random search. “[x.xx]” shows the average rank of each optimizer after
using 1/24 of the runtime budget for random search. For example,
“BOHB [2.90]” means that BOHB achieved the average rank of 2.90
among all the optimizers after running the specified amount of budget.
The title of each figure shows the number of workers used in the vi-
sualization and the red bars connect all the optimizers that show no
significant performance difference. Note that we used all the results
except for JAHS-Bench-201 and LCBench due to the incompatibility
between SMAC and JAHS-Bench-201 and LCBench.

6.2. Results

Figures 9–12 present the average rank performance curves for each optimizer on
each benchmark. As the average rank plots lose the information about the scale
in the objective function value, we provided the objective function value over time
in Appendix C.1. Although rough trajectories of average rank plots do not change
largely for some cases, ranks between some optimizers change depending on the
number of workers. To statistically test this and answer to RQ4, we performed
the Friedman test and its post-hoc analysis, i.e. critical difference diagram. The
result is shown in Figure 13. To visualize the figure, we used the results of each
optimizer after using 1/24 of the runtime budget for random search. Note that
random search uses ten times more budget compared to the other methods except
for HyperBand, so 1/24 of the maximum runtime budget Tmax

k implies that all the
optimizers including random search and HyperBand consumed the same amount of
runtime. The critical difference diagrams for different budget sizes are available in
Appendix C.3. According to Figure 13, while some optimizer pairs such as BOHB
and HEBO, and random search and NePS show the same performance statistically

48

over the four different numbers of workers P ∈ {1, 2, 4, 8}, DEHB exhibited different
performance significance depending on the number of workers. For example, DEHB
belongs to the top group with BOHB, TPE, and HEBO for P = 1, but it belongs to
the bottom group with random search and NePS for P = 8. As shown by the red
bars, we see statistically significant performance differences between the top groups
and the bottom groups. Therefore, this directly answers to RQ4 and we need to
consider the effect caused by the number of workers P for practical application.

49

7. Conclusions

In this thesis, we presented the algorithms to reduce experiment runtimes of asyn-
chronous MFO and answered the four research questions. In Chapter 4, we provided
the algorithms to sort out the return order and correctly calculate the simulated
runtime at each iteration to answer to RQ1. Although we showed that these algo-
rithms work theoretically, the implementation will still suffer from the vulnerabilities
in multi-core processing, e.g. racing conditions and latency caused by communication
between workers. To address this problem, we also provided the algorithm to simulate
identically only with a single core and this answered to RQ3. In Chapter 5, we
empirically validated our algorithms and implementation using various runtime dis-
tributions and various optimizers with different sampling costs. The results exhibited
that our implementation correctly yields the correct return orders and this answered
to RQ3. Additionally, the simulated runtimes match the actual runtimes with a
relative error of 0.1% while finishing the simulations 6.7× 103 times quicker for MCS
and 1.3× 105 times quicker for SCS. Finally, in Chapter 6, we performed experiments
using major HPO libraries for parallel setups. The whole experiments were over
1.3× 103 times quicker than the naïve simulations would have taken. The statistical
test on the data obtained by the experiments showed that experiments only with
non-parallel setup P = 1 are insufficient to demonstrate the performance of HPO
methods on parallel setups and this answered to RQ4. Our wrapper can be installed
via pip install mfhpo-simulator and it will positively impact the MFO research
using parallel setups.

51

Bibliography

[1] Y. Chen, A. Huang, Z. Wang, I. Antonoglou, J. Schrittwieser, D. Silver, and
N. de Freitas, “Bayesian optimization in AlphaGo,” arXiv:1812.06855, 2018.

[2] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
“Deep reinforcement learning that matters,” in AAAI Conference on Artificial
Intelligence, 2018.

[3] K. Eggensperger, F. Hutter, H. Hoos, and K. Leyton-Brown, “Efficient bench-
marking of hyperparameter optimizers via surrogates,” in AAAI Conference on
Artificial Intelligence, 2015.

[4] K. Eggensperger, P. Müller, N. Mallik, M. Feurer, R. Sass, A. Klein, N. Awad,
M. Lindauer, and F. Hutter, “HPOBench: A collection of reproducible multi-
fidelity benchmark problems for HPO,” arXiv:2109.06716, 2021.

[5] S. Arango, H. Jomaa, M. Wistuba, and J. Grabocka, “HPO-B: A large-scale re-
producible benchmark for black-box HPO based on OpenML,” arXiv:2106.06257,
2021.

[6] A. Bansal, D. Stoll, M. Janowski, A. Zela, and F. Hutter, “JAHS-Bench-201:
A foundation for research on joint architecture and hyperparameter search,” in
Advances in Neural Information Processing Systems Datasets and Benchmarks
Track, 2022.

[7] K. Kandasamy, G. Dasarathy, J. Schneider, and B. Póczos, “Multi-fidelity
Bayesian optimisation with continuous approximations,” in International Con-
ference on Machine Learning, 2017.

[8] K. Jamieson and A. Talwalkar, “Non-stochastic best arm identification and hyper-
parameter optimization,” in International Conference on Artificial Intelligence
and Statistics, 2016.

53

[9] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar, “HyperBand:
A novel bandit-based approach to hyperparameter optimization,” Journal of
Machine Learning Research, vol. 18, 2017.

[10] S. Falkner, A. Klein, and F. Hutter, “BOHB: Robust and efficient hyperparameter
optimization at scale,” in International Conference on Machine Learning, 2018.

[11] N. Awad, N. Mallik, and F. Hutter, “DEHB: Evolutionary HyperBand for scalable,
robust and efficient hyperparameter optimization,” arXiv:2105.09821, 2021.

[12] J. Snoek, H. Larochelle, and R. Adams, “Practical Bayesian optimization of ma-
chine learning algorithms,” Advances in Neural Information Processing Systems,
2012.

[13] A. Cowen-Rivers, W. Lyu, R. Tutunov, Z. Wang, A. Grosnit, R. Griffiths,
A. Maraval, H. Jianye, J. Wang, J. Peters, et al., “HEBO: pushing the limits of
sample-efficient hyper-parameter optimisation,” Journal of Artificial Intelligence
Research, vol. 74, 2022.

[14] M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng, C. Ben-
jamins, T. Ruhkopf, R. Sass, and F. Hutter, “SMAC3: A versatile Bayesian
optimization package for hyperparameter optimization,” Journal of Machine
Learning Research, vol. 23, 2022.

[15] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in International Conference
on Knowledge Discovery & Data Mining, 2019.

[16] A. Klein and F. Hutter, “Tabular benchmarks for joint architecture and hyper-
parameter optimization,” arXiv:1905.04970, 2019.

[17] X. Dong and Y. Yang, “NAS-Bench-201: Extending the scope of reproducible
neural architecture search,” arXiv:2001.00326, 2020.

[18] Y. Mehta, C. White, A. Zela, A. Krishnakumar, G. Zabergja, S. Moradian,
M. Safari, K. Yu, and F. Hutter, “NAS-Bench-Suite: NAS evaluation is (now)
surprisingly easy,” arXiv:2201.13396, 2022.

[19] K. Kandasamy, K. Vysyaraju, W. Neiswanger, B. Paria, C. Collins, J. Schneider,
B. Poczos, and E. Xing, “Tuning hyperparameters without grad students: Scalable

54

and robust Bayesian optimisation with Dragonfly,” Journal of Machine Learning
Research, vol. 21, 2020.

[20] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. Gonzalez, and I. Stoica, “Tune: A
research platform for distributed model selection and training,” arXiv:1807.05118,
2018.

[21] Y. Li, Y. Shen, H. Jiang, W. Zhang, J. Li, J. Liu, C. Zhang, and B. Cui, “Hyper-
Tune: towards efficient hyper-parameter tuning at scale,” arXiv:2201.06834,
2022.

[22] D. Salinas, M. Seeger, A. Klein, V. Perrone, M. Wistuba, and C. Archambeau,
“Syne Tune: A library for large scale hyperparameter tuning and reproducible
research,” in International Conference on Automated Machine Learning, 2022.

[23] J. Song, Y. Tokpanov, Y. Chen, D. Fleischman, K. Fountaine, H. Atwater,
and Y. Yue, “Optimizing photonic nanostructures via multi-fidelity Gaussian
processes,” arXiv:1811.07707, 2018.

[24] A. Palizhati, M. Aykol, S. Suram, J. Hummelshøj, and J. Montoya, “Multi-fidelity
sequential learning for accelerated materials discovery,” 2021.

[25] P. Thodoroff, M. Kaiser, R. Williams, R. Arthern, S. Hosking, N. Lawrence,
J. Byrne, and I. Kazlauskaite, “Multi-fidelity experimental design for ice-sheet
simulation,” arXiv:2307.08449, 2023.

[26] F. Hutter, H. Hoos, and K. Leyton-Brown, “Sequential model-based optimization
for general algorithm configuration,” in Learning and Intelligent Optimization,
2011.

[27] K. Swersky, J. Snoek, and R. Adams, “Multi-task Bayesian optimization,” Ad-
vances in Neural Information Processing Systems, 2013.

[28] K. Swersky, J. Snoek, and R. Adams, “Freeze-thaw Bayesian optimization,”
arXiv:1406.3896, 2014.

[29] T. Domhan, J. Springenberg, and F. Hutter, “Speeding up automatic hyper-
parameter optimization of deep neural networks by extrapolation of learning
curves,” in International Joint Conference on Artificial Intelligence, 2015.

[30] N. Awad, A. Sharma, and F. Hutter, “MO-DEHB: Evolutionary-based HyperBand
for multi-objective optimization,” arXiv:2305.04502, 2023.

55

[31] A. Klein, L. Tiao, T. Lienart, C. Archambeau, and M. Seeger, “Model-based
asynchronous hyperparameter and neural architecture search,” arXiv:2003.10865,
2020.

[32] B. Yu, H. Shen, P. Huai, Q. Xu, and W. He, “FedTLBOHB: Efficient HyperBand
with transfer learning for vertical federated learning,” in International Conference
on Computer and Communications, 2022.

[33] L. Li, K. Jamieson, A. Rostamizadeh, E. Gonina, J. Ben-Tzur, M. Hardt,
B. Recht, and A. Talwalkar, “A system for massively parallel hyperparameter
tuning,” Proceedings of Machine Learning and Systems, vol. 2, 2020.

[34] G. Zhu and R. Zhu, “Accelerating hyperparameter optimization of deep neural
network via progressive multi-fidelity evaluation,” in Advances in Knowledge
Discovery and Data Mining, 2020.

[35] R. Schmucker, M. Donini, M. Zafar, D. Salinas, and C. Archambeau, “Multi-
objective asynchronous successive halving,” arXiv:2106.12639, 2021.

[36] G. Zappella, D. Salinas, and C. Archambeau, “A resource-efficient method for
repeated HPO and NAS problems,” arXiv:2103.16111, 2021.

[37] O. Bohdal, L. Balles, B. Ermis, C. Archambeau, and G. Zappella, “PASHA:
Efficient HPO with progressive resource allocation,” arXiv:2207.06940, 2022.

[38] P. Mendes, M. Casimiro, P. Romano, and D. Garlan, “HyperJump: accelerating
HyperBand via risk modelling,” in AAAI Conference on Artificial Intelligence,
vol. 37, 2023.

[39] H. Lee, G. Lee, J. Kim, S. Cho, D. Kim, and D. Yoo, “Improving multi-fidelity
optimization with a recurring learning rate for hyperparameter tuning,” in Winter
Conference on Applications of Computer Vision, 2023.

[40] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley, “Google
Vizier: A service for black-box optimization,” in International Conference on
Knowledge Discovery & Data Mining, 2017.

[41] A. Klein, S. Falkner, J. Springenberg, and F. Hutter, “Learning curve prediction
with Bayesian neural networks,” 2016.

56

[42] A. Chandrashekaran and I. Lane, “Speeding up hyper-parameter optimization by
extrapolation of learning curves using previous builds,” in European Conference
on Machine Learning and Knowledge Discovery in Databases, 2017.

[43] S. Adriaensen, H. Rakotoarison, S. Müller, and F. Hutter, “Efficient Bayesian
learning curve extrapolation using prior-data fitted networks,” in Meta-Learning
Workshop at Advances in Neural Information Processing Systems, 2022.

[44] M. Wistuba, A. Kadra, and J. Grabocka, “Supervising the multi-fidelity race
of hyperparameter configurations,” Advances in Neural Information Processing
Systems, 2022.

[45] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter, “Fast Bayesian opti-
mization of machine learning hyperparameters on large datasets,” in International
Conference on Artificial Intelligence and Statistics, 2017.

[46] M. Poloczek, J. Wang, and P. Frazier, “Multi-information source optimization,”
Advances in Neural Information Processing Systems, 2017.

[47] S. Takeno, H. Fukuoka, Y. Tsukada, T. Koyama, M. Shiga, I. Takeuchi, and
N. Karasuyama, “Multi-fidelity Bayesian optimization with max-value entropy
search and its parallelization,” in International Conference on Machine Learning,
2020.

[48] J. Wu, S. Toscano-Palmerin, P. Frazier, and A. Wilson, “Practical multi-fidelity
Bayesian optimization for hyperparameter tuning,” in Uncertainty in Artificial
Intelligence, 2020.

[49] S. Li, R. Kirby, and S. Zhe, “Batch multi-fidelity Bayesian optimization with deep
auto-regressive networks,” Advances in Neural Information Processing Systems,
2021.

[50] S. Belakaria, J. Doppa, N. Fusi, and R. Sheth, “Bayesian optimization over
iterative learners with structured responses: A budget-aware planning approach,”
in International Conference on Artificial Intelligence and Statistics, 2023.

[51] Y. Yang, K. Deng, and M. Zhu, “Multi-level training and Bayesian optimization
for economical hyperparameter optimization,” arXiv:2007.09953, 2020.

[52] E. Bonilla, K. Chai, and C. Williams, “Multi-task Gaussian process prediction,”
Advances in Neural Information Processing Systems, 2007.

57

[53] Y. Li, Y. Shen, J. Jiang, J. Gao, C. Zhang, and B. Cui, “MFES-HB: Efficient
HyperBand with multi-fidelity quality measurements,” in AAAI Conference on
Artificial Intelligence, 2021.

[54] J. Zhao, X. Ning, E. Liu, B. Ru, Z. Zhou, T. Zhao, C. Chen, J. Zhang, Q. Liao,
and Y. Wang, “Dynamic ensemble of low-fidelity experts: Mitigating NAS
cold-start,” arXiv:2302.00932, 2023.

[55] M. Feurer, B. Letham, F. Hutter, and E. Bakshy, “Practical transfer learning for
Bayesian optimization,” arXiv:1802.02219, 2018.

[56] S. Watanabe, N. Awad, M. Onishi, and F. Hutter, “Multi-objective tree-structured
Parzen estimator meets meta-learning,” arXiv:2212.06751, 2022.

[57] S. Watanabe, N. Awad, M. Onishi, and F. Hutter, “Speeding up multi-objective
hyperparameter optimization by task similarity-based meta-learning for the
tree-structured Parzen estimator,” arXiv:2212.06751, 2023.

[58] A. Biedenkapp, H. Bozkurt, T. Eimer, F. Hutter, and M. Lindauer, “Dynamic
algorithm configuration: foundation of a new meta-algorithmic framework,” in
European Conference on Artificial Intelligence, 2020.

[59] S. Adriaensen, A. Biedenkapp, G. Shala, N. Awad, T. Eimer, M. Lindauer, and
F. Hutter, “Automated dynamic algorithm configuration,” Journal of Artificial
Intelligence Research, vol. 75, 2022.

[60] M. Jaderberg, V. Dalibard, S. Osindero, W. Czarnecki, J. Donahue, A. Razavi,
O. Vinyals, T. Green, I. Dunning, K. Simonyan, et al., “Population based training
of neural networks,” arXiv:1711.09846, 2017.

[61] J. Parker-Holder, V. Nguyen, and S. Roberts, “Provably efficient online hy-
perparameter optimization with population-based bandits,” arXiv:2002.02518,
2020.

[62] B. Zhang, R. Rajan, L. Pineda, N. Lambert, A. Biedenkapp, K. Chua, F. Hut-
ter, and R. Calandra, “On the importance of hyperparameter optimization for
model-based reinforcement learning,” in International Conference on Artificial
Intelligence and Statistics, 2021.

58

[63] J. Liang, S. Gonzalez, H. Shahrzad, and R. Miikkulainen, “Regularized evolu-
tionary population-based training,” in Genetic and Evolutionary Computation
Conference, 2021.

[64] A. Dushatskiy, A. Chebykin, T. Alderliesten, and P. Bosman, “Multi-objective
population based training,” in International Conference on Machine Learning,
2023.

[65] S. Belakaria, A. Deshwal, and J. Doppa, “Multi-fidelity multi-objective Bayesian
optimization: An output space entropy search approach,” in AAAI Conference
on artificial intelligence, 2020.

[66] M. Gelbart, J. Snoek, and R. Adams, “Bayesian optimization with unknown
constraints,” arXiv:1403.5607, 2014.

[67] J. Gardner, M. Kusner, Z. Xu, K. Weinberger, and J. Cunningham, “Bayesian op-
timization with inequality constraints,” in International Conference on Machine
Learning, 2014.

[68] B. Letham, B. Karrer, G. Ottoni, and E. Bakshy, “Constrained Bayesian opti-
mization with noisy experiments,” Bayesian Analysis, vol. 14, 2019.

[69] S. Watanabe and F. Hutter, “c-TPE: Generalizing tree-structured Parzen esti-
mator with inequality constraints for continuous and categorical hyperparameter
optimization,” arXiv:2211.14411, 2022.

[70] S. Watanabe and F. Hutter, “c-TPE: Tree-structured Parzen estimator
with inequality constraints for expensive hyperparameter optimization,”
arXiv:2211.14411, 2023.

[71] L. Zimmer, M. Lindauer, and F. Hutter, “Auto-PyTorch: Multi-fidelity met-
alearning for efficient and robust AutoDL,” Transactions on Pattern Analysis
and Machine Intelligence, 2021.

[72] F. Pfisterer, L. Schneider, J. Moosbauer, M. Binder, and B. Bischl, “YAHPO
Gym – an efficient multi-objective multi-fidelity benchmark for hyperparameter
optimization,” in International Conference on Automated Machine Learning,
2022.

[73] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,”
Journal of Machine Learning Research, vol. 13, 2012.

59

[74] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” Advances in Neural Information Processing Systems,
2011.

[75] S. Watanabe, “Tree-structured Parzen estimator: Understanding its algorithm
components and their roles for better empirical performance,” arXiv:2304.11127,
2023.

[76] S. Müller and F. Hutter, “TrivialAugment: Tuning-free yet state-of-the-art data
augmentation,” in International Conference on Computer Vision, 2021.

60

A. Benchmark Problems

We first note that since the Branin and the Hartmann functions must be minimized,
our functions have different signs from the prior literature that aims to maximize
objective functions and when z = [z1, z2, . . . , zK] ∈ RK , our examples take z =

[z, z, . . . , z] ∈ RK . However, if users wish, users can specify z as z = [z1, z2, . . . , zK]

from fidel_dim.

A.1. Branin Function

The Branin function is the following 2D function that has 3 global minimizers and
no local minimizer:

f(x1, x2) = a(x2 − bx21 + cx1 − r)2 + s(1− t) cosx1 + s (11)

where x ∈ [−5, 10] × [0, 15], a = 1, b = 5.1/(4π2), c = 5/π, r = 6, s = 10, and
t = 1/(8π). The multi-fidelity Branin function was invented by Kandasamy et al. [19]
and it replaces b, c, t with the following bz, cz, tz:

bz := b− δb(1− z1),

cz := c− δc(1− z2), and

tz := t+ δt(1− z3),

(12)

where z ∈ [0, 1]3, δb = 10−2, δc = 10−1, and δt = 5 × 10−3. δ· controls the rank
correlation between low- and high-fidelities and higher δ· yields less correlation. The
runtime function for the multi-fidelity Branin function is computed as 1:

τ(z) := C(0.05 + 0.95z
3/2
1) (13)

1See the implementation of Kandasamy et al. [19]: branin_mf.py at https://github.com/
dragonfly/dragonfly/.

61

https://github.com/dragonfly/dragonfly/
https://github.com/dragonfly/dragonfly/

where C ∈ R+ defines the maximum runtime to evaluate f .

A.2. Hartmann Function

The following Hartmann function has 4 local minimizers for the 3D case and 6 local
minimizers for the 6D case:

f(x) := −
4∑

i=1

αi exp

[
−

3∑
j=1

Ai,j(xj − Pi,j)
2

]
(14)

where α = [1.0, 1.2, 3.0, 3.2]>, x ∈ [0, 1]D, A for the 3D case is

A =

3 10 30

0.1 10 35

3 10 30

0.1 10 35

 , (15)

A for the 6D case is

A =

10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14

 , (16)

P for the 3D case is

P = 10−4 ×

3689 1170 2673

4699 4387 7470

1091 8732 5547

381 5743 8828

 , (17)

and P for the 6D case is

P = 10−4 ×

1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381

 . (18)

62

The multi-fidelity Hartmann function was invented by Kandasamy et al. [19] and it
replaces α with the following αz:

αz := δ(1− z) (19)

where z ∈ [0, 1]4 and δ = 0.1 is the factor that controls the rank correlation between
low- and high-fidelities. Higher δ yields less correlation. The runtime function of the
multi-fidelity Hartmann function is computed as 2:

τ(z) =
1

10
+

9

10

z1 + z32 + z3z4
3

(20)

for the 3D case and

τ(z) =
1

10
+

9

10

z1 + z22 + z3 + z34
4

(21)

for the 6D case where C ∈ R+ defines the maximum runtime to evaluate f .

A.3. Tabular & Surrogate Benchmarks

In this thesis, we used the MLP benchmark in Table 6 of HPOBench [4], HPOlib [16],
JAHS-Bench-201 [6], and LCBench [71] in YAHPOBench [72].

HPOBench is a collection of tabular, surrogate, and raw benchmarks. In our example,
we have the MLP (multi-layer perceptron) benchmark, which is a tabular benchmark,
in Table 6 of the HPOBench paper [4]. This benchmark has 8 classification tasks
and provides the validation accuracy, runtime, F1 score, and precision for each
configuration at epochs of {3, 9, 27, 81, 243}. The search space of MLP benchmark in
HPOBench is provided in Table 3.

HPOlib is a tabular benchmark for neural networks on regression tasks (Slice Local-
ization, Naval Propulsion, Protein Structure, and Parkinsons Telemonitoring). This
benchmark has 4 regression tasks and provides the number of parameters, runtime,
and training and validation mean squared error (MSE) for each configuration at each
epoch. The search space of HPOlib is provided in Table 4.

2See the implementation of Kandasamy et al. [19]: hartmann3_2_mf.py for the 3D case and
hartmann6_4_mf.py for the 6D case at https://github.com/dragonfly/dragonfly/.

63

https://github.com/dragonfly/dragonfly/

Table 3.: The search space of the MLP benchmark in HPOBench (5 discrete + 1
fidelity parameters). Note that we have 2 fidelity parameters only for
the raw benchmark. Each benchmark has performance metrics of 30000
possible configurations with 5 random seeds.

Hyperparameter Choices

L2 regularization [10−8, 1.0] with 10 evenly distributed grids
Batch size [4, 256] with 10 evenly distributed grids
Initial learning rate [10−5, 1.0] with 10 evenly distributed grids
Width [16, 1024] with 10 evenly distributed grids
Depth {1, 2, 3}

Epoch (Fidelity) {3, 9, 27, 81, 243}

JAHS-Bench-201 is an XGBoost surrogate benchmark for neural networks on image
classification tasks (CIFAR10, Fashion-MNIST, and Colorectal Histology). This
benchmark has 3 image classification tasks and provides FLOPS, latency, runtime,
architecture size in megabytes, test accuracy, training accuracy, and validation
accuracy for each configuration with two fidelity parameters: image resolution and
epoch. The search space of JAHS-Bench-201 is provided in Table 5.

LCBench is a random-forest surrogate benchmark for neural networks on OpenML
datasets. This benchmark has 34 tasks and provides training/test/validation accuracy,
losses, balanced accuracy, and runtime at each epoch. The search space of HPOlib is
provided in Table 6.

Note that the task IDs for each benchmark dataset are listed in Table 7.

64

Table 4.: The search space of HPOlib (6 discrete + 3 categorical + 1 fidelity
parameters). Each benchmark has performance metrics of 62208 possible
configurations with 4 random seeds.

Hyperparameter Choices

Batch size {23, 24, 25, 26}
Initial learning rate {5× 10−4, 10−3, 5× 10−3, 10−2, 5× 10−2, 10−1}
Number of units {1,2} {24, 25, 26, 27, 28, 29}
Dropout rate {1,2} {0.0, 0.3, 0.6}

Learning rate scheduler {cosine, constant}
Activation function {1,2} {relu, tanh}

Epoch (Fidelity) [1, 100]

Table 5.: The search space of JAHS-Bench-201 (2 continuous + 2 discrete + 8
categorical + 2 fidelity parameters). JAHS-Bench-201 is an XGBoost
surrogate benchmark and the outputs are deterministic.

Hyperparameter Range or choices

Learning rate [10−3, 1]
L2 regularization [10−5, 10−2]
Activation function {ReLU, Hardswish, Mish}
Trivial augment [76] {True, False}

Depth multiplier {1, 2, 3}
Width multiplier {22, 23, 24}

Cell search space {none, avg-pool-3x3, bn-conv-1x1,
(NAS-Bench-201 [17], Edge 1 – 6) bn-conv-3x3, skip-connection}

Epoch (Fidelity) [1, 200]
Resolution (Fidelity) [0.0, 1.0]

65

Table 6.: The search space of LCBench (3 discrete + 4 continuous + 1 fidelity
parameters). Although the original LCBench is a collection of 2000 random
configurations, YAHPOBench created random-forest surrogates over the
2000 observations. Users can choose deterministic or non-deterministic
outputs.

Hyperparameter Choices

Batch size [24, 29]
Max number of units [26, 210]
Number of layers [1, 5]

Initial learning rate [10−4, 10−1]
L2 regularization [10−5, 10−1]
Max dropout rate [0.0, 1.0]
Momentum [0.1, 0.99]

Epoch (Fidelity) [1, 52]

66

Table 7.: The correspondance of task IDs and their tasks. As HPOBench and
LCBench use OpenML tasks, we show the OpenML task ID for them.

Task ID HPOBench HPOlib JAHS-Bench-201 LCBench

1 167104 Slice Localization CIFAR10 3945
2 167184 Protein Structure Fashion-MNIST 7593
3 189905 Naval Propulsion Colorectal Histology 34539
4 167161 Parkinsons Telemonitoring – 126025
5 167181 – – 126026
6 167190 – – 126029
7 189906 – – 146212
8 167168 – – 167104
9 – – – 167149
10 – – – 167152
11 – – – 167161
12 – – – 167168
13 – – – 167181
14 – – – 167184
15 – – – 167185
16 – – – 167190
17 – – – 167200
18 – – – 167201
19 – – – 168329
20 – – – 168330
21 – – – 168331
22 – – – 168335
23 – – – 168868
24 – – – 168908
25 – – – 168910
26 – – – 189354
27 – – – 189862
28 – – – 189865
29 – – – 189866
30 – – – 189873
31 – – – 189905
32 – – – 189906
33 – – – 189908
34 – – – 189909

67

B. Tool Usage

In this chapter, we describe more details on our wrapper.

B.1. Wrapper Object (ObjectiveFuncWrapper) Arguments

The arguments of ObjectiveFuncWrapper object are as follows:

• obj_func: the objective function that takes (eval_config, fidels, seed,
**data_to_scatter) as arguments and returns f(x|a) and τ(x|a) where eval_config
is dict[str, Any],

• launch_multiple_wrappers_from_user_side (bool): whether to instantiate
multiple wrappers from user side as in Section 2.4.2 or application side as in
Section 2.4.3,

• ask_and_tell (bool): whether to use SCS (True) or not,

• save_dir_name (str | None): the results and the required information will
be stored in mfhpo-simulator-info/<save_dir_name>/,

• n_workers (int): the number of parallel workers P ,

• n_evals (int): the number of evaluations to get,

• n_actual_evals_in_opt (int): the number of HP configurations to be evalu-
ated in an optimizer which is used only for checking if no hang happens (should
take n_evals + n_workers),

• continual_max_fidel (int | None): when users would like to restart an
evaluation from an intermediate state, the maximum fidelity value for the target
fidelity must be provided. Note that the restart is allowed only if there is only
one fidelity parameter, i.e. K = 1. If None, no restart happens,

69

• runtime_key (str): the key of the runtime in the returned value of obj_func,

• obj_keys (list[str]): the keys of the objective and constraint names in the
returned value of obj_func and the values of the specified keys will be stored
in the result file,

• fidel_keys (list[str] | None): the keys of the fidelity parameters in input
fidels,

• seed (int | None): the random seed to be used in the wrapper,

• max_waiting_time (float): the maximum waiting time for each worker and
if each worker did not get any update for this amount of time, it will return
inf,

• store_config (bool): whether to store HP configurations, fidelities, and seed
used for each evaluation,

• store_actual_cumtime (bool): whether to store actual runtimes at each
iteration,

• check_interval_time (float): how often each worker should check whether
a new job can be assigned to it.

• allow_parallel_sampling (bool): whether samplings can happen in parallel
and the default is False,

• config_tracking (bool): whether to validate config_id provided from the
user side. It slows down down the simulation when n_evals is large (> 3000),
but it is recommended to avoid unexpected bugs when we use the continual
setup,

• max_total_eval_time (float): the maximum total evaluation time for the
optimization. For example, if max_total_eval_time = 3600 is specified and
the simulation has not finished n_evals evaluations in simulated runtime of
3600 seconds, the simulation will be terminated. It is useful to combine with a
large n_evals,

• expensive_sampler (bool): whether to use MCS with Algorithm 2 or not. If
a query overhead is large, it should be set False,

70

• tmp_dir (str | None): the temporary directory useful for cluster usage. By
using this argument, the root directory of the data storage path will be
<tmp_dir>. More specifically, <tmp_dir>/mfhpo-simulator-info/<save_dir_name>
will be used, and

• worker_index (int | None): the explicit worker index specifier useful for
HPO libraries discussed in Section 2.4.2. If not specified, the index for each
worker will be automatically allocated, but it could be unstable. For example,
automatic index allocation failed with 0.01% of the probability for n_workers
= 8 in our environment.

Note that data_to_scatter is especially important when an optimizer uses multi-
processing packages such as dask, which deserialize obj_func every time we call.
By passing large-size data via data_to_scatter, the time for (de)serialization will
be negligible if optimizers use dask.scatter or something similar internally. We
kindly ask readers to check any updates to the arguments at https://github.com/
nabenabe0928/mfhpo-simulator/.

B.2. Wrapper Interface

In our package, ObjectiveFuncWrapper is the main module and it provides three
different instantiation options: (1) function wrapper for HPO libraries discussed in
Section 2.4.3 (e.g. DEHB and SMAC3), (2) function wrapper for HPO libraries
discussed in Section 2.4.2 (e.g. NePS, BOHB, and MPI-based optimizers), and (3)
function and optimizer wrapper for the ask-and-tell interface. In this thesis, we discuss
the usage of Options 1 and 2, and we kindly ask users to refer to our repository 1 for
Option 3.

An instance of ObjectiveFuncWrapper serves as an objective function and we just
need to pass it to an optimizer as shown in Figure 2 (Right). When optimizers take
a different interface, we can easily modify the interface via inheritance:

1https://github.com/nabenabe0928/mfhpo-simulator/tree/main/examples/ask_and_tell

71

https://github.com/nabenabe0928/mfhpo-simulator/
https://github.com/nabenabe0928/mfhpo-simulator/
https://github.com/nabenabe0928/mfhpo-simulator/tree/main/examples/ask_and_tell

Listing B.1: An example of inheritance for a different interface.

class MyObjectiveFuncWrapper(ObjectiveFuncWrapper):

def __call__(self, config, budget):

modify config into dict[str, Any]

return super().__call__(

eval_config=config,

fidels={self.fidel_keys[0]: budget}

)

In Listing B.1, the optimizer requires the objective function to have arguments
named config instead of eval_config and budget instead of fidels. Then we need
to somehow modify config into the format of eval_config (dict[str, Any]) if
config is not dict[str, Any]. We can also easily deactivate the MFO setting if
fidel_keys=None is specified:

Listing B.2: An example of inheritance for non-MFO setup.

class MyObjectiveFuncWrapper(ObjectiveFuncWrapper):

def __call__(self, eval_config):

fidel_keys must be None; otherwise , get an error

return super().__call__(eval_config=eval_config)

See our repository 2 for more examples.

2https://github.com/nabenabe0928/mfhpo-simulator/tree/main/examples

72

https://github.com/nabenabe0928/mfhpo-simulator/tree/main/examples

C. Additional Results

In this chapter, we show additional results that we did not present in the main part.

C.1. Performance over Time for Each Task

Figures 14–65 present the performance over time for each setup. To plot the figures, we
used benchmark_simulator.utils.get_performance_over_time_from_paths pro-
vided in our package and the weak-color bands were calculated by standard error
over 30 random seeds. The y-axis shows the minimum cumulative objective value
and we consistently minimize the objective function for all the setups.

73

10 2

10 1

100

101

102 P = 1 P = 2

103 104 105 10610 2

10 1

100

101

102 P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS
SMAC

103 104 105 106

P = 8

Simulated Runtime [s]

Figure 14.: The performance over time on the Branin function.

4

3

2

1

0
P = 1 P = 2

103 104 105 106
4

3

2

1

0
P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS
SMAC

103 104 105 106

P = 8

Simulated Runtime [s]

Figure 15.: The performance over time on the 3D Hartmann function.

74

3

2

1

0
P = 1 P = 2

103 104 105 106

3

2

1

0
P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS
SMAC

103 104 105 106

P = 8

Simulated Runtime [s]

Figure 16.: The performance over time on the 6D Hartmann function.

101

P = 1 P = 2

10 1 101 103

101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS
SMAC

10 1 101 103

P = 8

Simulated Runtime [s]

Figure 17.: The performance over time on OpenML ID 167104 from HPOBench.

75

3 × 101

4 × 101

5 × 101
P = 1 P = 2

100 102 104

3 × 101

4 × 101

5 × 101
P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS
SMAC

100 102 104

P = 8

Simulated Runtime [s]

Figure 18.: The performance over time on OpenML ID 167184 from HPOBench.

10 3

10 1

101

P = 1 P = 2

100 102 104

10 3

10 1

101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS
SMAC

100 102 104

P = 8

Simulated Runtime [s]

Figure 19.: The performance over time on OpenML ID 189905 from HPOBench.

76

101

2 × 101

3 × 101
4 × 101

P = 1 P = 2

10 1 101 103 105

101

2 × 101

3 × 101
4 × 101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS
SMAC

10 1 101 103 105

P = 8

Simulated Runtime [s]

Figure 20.: The performance over time on OpenML ID 167161 from HPOBench.

2 × 101

3 × 101
4 × 101

P = 1 P = 2

100 102 104

2 × 101

3 × 101
4 × 101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS
SMAC

100 102 104

P = 8

Simulated Runtime [s]

Figure 21.: The performance over time on OpenML ID 167181 from HPOBench.

77

101

P = 1 P = 2

100 102 104 106

101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS
SMAC

100 102 104 106

P = 8

Simulated Runtime [s]

Figure 22.: The performance over time on OpenML ID 167190 from HPOBench.

101

P = 1 P = 2

100 102 104

101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS
SMAC

100 102 104

P = 8

Simulated Runtime [s]

Figure 23.: The performance over time on OpenML ID 189906 from HPOBench.

78

101

P = 1 P = 2

10 1 101 103 105

101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS
SMAC

10 1 101 103 105

P = 8

Simulated Runtime [s]

Figure 24.: The performance over time on OpenML ID 167168 from HPOBench.

8

6

4

2
P = 1 P = 2

101 102 103 104 105 106

8

6

4

2
P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS
SMAC

101 102 103 104 105 106

P = 8

Simulated Runtime [s]

Figure 25.: The performance over time on Slice Localization of HPOlib.

79

1.50

1.25

1.00

0.75

0.50
P = 1 P = 2

101 102 103 104 105
1.50

1.25

1.00

0.75

0.50
P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS
SMAC

101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 26.: The performance over time on Protein Structure of HPOlib.

10.0

7.5

5.0

2.5

P = 1 P = 2

100 101 102 103 104 105

10.0

7.5

5.0

2.5

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS
SMAC

100 101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 27.: The performance over time on Naval Propulsion of HPOlib.

80

4

2

P = 1 P = 2

100 101 102 103 104

4

2

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS
SMAC

100 101 102 103 104

P = 8

Simulated Runtime [s]

Figure 28.: The performance over time on Parkinsons Telemonitoring of HPOlib.

101

2 × 101

3 × 101
4 × 101

6 × 101
P = 1 P = 2

103 104 105 106 107 108

101

2 × 101

3 × 101
4 × 101

6 × 101
P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

103 104 105 106 107 108

P = 8

Simulated Runtime [s]

Figure 29.: The performance over time on CIFAR10 of JAHS-Bench-201.

81

101

6 × 100

2 × 101

3 × 101
P = 1 P = 2

104 105 106 107 108

101

6 × 100

2 × 101

3 × 101
P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

104 105 106 107 108

P = 8

Simulated Runtime [s]

Figure 30.: The performance over time on Fashion-MNIST of JAHS-Bench-201.

101

P = 1 P = 2

103 104 105 106 107

101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

103 104 105 106 107

P = 8

Simulated Runtime [s]

Figure 31.: The performance over time on Colorectal Histology of JAHS-Bench-201.

82

101

P = 1 P = 2

101 102 103 104 105

101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 32.: The performance over time on OpenML ID 3945 from LCBench.

101

2 × 101

3 × 101
4 × 101

P = 1 P = 2

102 103 104 105 106

101

2 × 101

3 × 101
4 × 101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

102 103 104 105 106

P = 8

Simulated Runtime [s]

Figure 33.: The performance over time on OpenML ID 7593 from LCBench.

83

2 × 101

3 × 101

4 × 101

P = 1 P = 2

101 102 103 104 105

2 × 101

3 × 101

4 × 101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 34.: The performance over time on OpenML ID 34539 from LCBench.

101

P = 1 P = 2

101 102 103 104 105

101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 35.: The performance over time on OpenML ID 126025 from LCBench.

84

100

101

P = 1 P = 2

101 102 103 104 105

100

101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 36.: The performance over time on OpenML ID 126026 from LCBench.

101

P = 1 P = 2

101 102 103 104 105

101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 37.: The performance over time on OpenML ID 126029 from LCBench.

85

101

P = 1 P = 2

100 101 102 103 104 105

101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

100 101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 38.: The performance over time on OpenML ID 146212 from LCBench.

101

6 × 100

2 × 101

3 × 101
4 × 101

P = 1 P = 2

100 101 102 103 104 105

101

6 × 100

2 × 101

3 × 101
4 × 101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

100 101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 39.: The performance over time on OpenML ID 167104 from LCBench.

86

101

P = 1 P = 2

101 102 103 104 105

101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 40.: The performance over time on OpenML ID 167149 from LCBench.

101

P = 1 P = 2

101 102 103 104 105

101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 41.: The performance over time on OpenML ID 167152 from LCBench.

87

2 × 101

3 × 101

4 × 101

P = 1 P = 2

101 102 103 104 105

2 × 101

3 × 101

4 × 101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 42.: The performance over time on OpenML ID 167161 from LCBench.

101

2 × 101

3 × 101
4 × 101

6 × 101

P = 1 P = 2

101 102 103 104 105
101

2 × 101

3 × 101
4 × 101

6 × 101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 43.: The performance over time on OpenML ID 167168 from LCBench.

88

2 × 101

3 × 101

4 × 101

6 × 101 P = 1 P = 2

101 102 103 104 105

2 × 101

3 × 101

4 × 101

6 × 101 P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 44.: The performance over time on OpenML ID 167181 from LCBench.

2 × 101

3 × 101

4 × 101
P = 1 P = 2

101 102 103 104 105

2 × 101

3 × 101

4 × 101
P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 45.: The performance over time on OpenML ID 167184 from LCBench.

89

101

P = 1 P = 2

101 102 103 104 105 106

101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

101 102 103 104 105 106

P = 8

Simulated Runtime [s]

Figure 46.: The performance over time on OpenML ID 167185 from LCBench.

101

2 × 101

3 × 101

4 × 101 P = 1 P = 2

101 102 103 104 105

101

2 × 101

3 × 101

4 × 101 P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 47.: The performance over time on OpenML ID 167190 from LCBench.

90

2 × 101

3 × 101

4 × 101

P = 1 P = 2

101 102 103 104 105

2 × 101

3 × 101

4 × 101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 48.: The performance over time on OpenML ID 167200 from LCBench.

2 × 101

3 × 101

4 × 101

6 × 101
P = 1 P = 2

101 102 103 104 105

2 × 101

3 × 101

4 × 101

6 × 101
P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 49.: The performance over time on OpenML ID 167201 from LCBench.

91

102

5 × 101

6 × 101

7 × 101
8 × 101
9 × 101

P = 1 P = 2

101 102 103 104 105

102

5 × 101

6 × 101

7 × 101
8 × 101
9 × 101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 50.: The performance over time on OpenML ID 168329 from LCBench.

3 × 101

4 × 101

6 × 101 P = 1 P = 2

101 102 103 104 105

3 × 101

4 × 101

6 × 101 P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 51.: The performance over time on OpenML ID 168330 from LCBench.

92

2 × 101

3 × 101
4 × 101

6 × 101

P = 1 P = 2

101 102 103 104 105

2 × 101

3 × 101
4 × 101

6 × 101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 52.: The performance over time on OpenML ID 168331 from LCBench.

100

101

P = 1 P = 2

101 102 103 104 105
100

101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 53.: The performance over time on OpenML ID 168335 from LCBench.

93

100

101
P = 1 P = 2

100 101 102 103 104 105

100

101
P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

100 101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 54.: The performance over time on OpenML ID 168868 from LCBench.

2 × 101

3 × 101

P = 1 P = 2

101 102 103 104 105 106

2 × 101

3 × 101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

101 102 103 104 105 106

P = 8

Simulated Runtime [s]

Figure 55.: The performance over time on OpenML ID 168908 from LCBench.

94

2 × 101

3 × 101
4 × 101

6 × 101

P = 1 P = 2

101 102 103 104 105 106

2 × 101

3 × 101
4 × 101

6 × 101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

101 102 103 104 105 106

P = 8

Simulated Runtime [s]

Figure 56.: The performance over time on OpenML ID 168910 from LCBench.

101

2 × 101

3 × 101
4 × 101

P = 1 P = 2

102 103 104 105 106
101

2 × 101

3 × 101
4 × 101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

102 103 104 105 106

P = 8

Simulated Runtime [s]

Figure 57.: The performance over time on OpenML ID 189354 from LCBench.

95

101

2 × 101

3 × 101
4 × 101

P = 1 P = 2

101 102 103 104 105

101

2 × 101

3 × 101
4 × 101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 58.: The performance over time on OpenML ID 189862 from LCBench.

101

P = 1 P = 2

101 102 103 104 105

101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 59.: The performance over time on OpenML ID 189865 from LCBench.

96

2 × 101

3 × 101

4 × 101
P = 1 P = 2

102 103 104 105 106

2 × 101

3 × 101

4 × 101
P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

102 103 104 105 106

P = 8

Simulated Runtime [s]

Figure 60.: The performance over time on OpenML ID 189866 from LCBench.

101

102 P = 1 P = 2

102 103 104 105 106

101

102 P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

102 103 104 105 106

P = 8

Simulated Runtime [s]

Figure 61.: The performance over time on OpenML ID 189873 from LCBench.

97

101

P = 1 P = 2

100 101 102 103 104 105

101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

100 101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 62.: The performance over time on OpenML ID 189905 from LCBench.

101

P = 1 P = 2

101 102 103 104 105

101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 63.: The performance over time on OpenML ID 189906 from LCBench.

98

101

6 × 100

2 × 101

3 × 101

P = 1 P = 2

101 102 103 104 105 106

101

6 × 100

2 × 101

3 × 101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

101 102 103 104 105 106

P = 8

Simulated Runtime [s]

Figure 64.: The performance over time on OpenML ID 189908 from LCBench.

101

2 × 101

3 × 101
4 × 101

P = 1 P = 2

101 102 103 104 105101

2 × 101

3 × 101
4 × 101

P = 4

Random
Hyperband

TPE
BOHB

HEBO
DEHB

NePS

101 102 103 104 105

P = 8

Simulated Runtime [s]

Figure 65.: The performance over time on OpenML ID 189909 from LCBench.

99

C.2. Actual & Simulated Runtimes for Each Setup

Tables 8–45 list the actual and simulated runtimes for each setup averaged over 30

random seeds. In each table, Act. is actual runtime, Sim. is simulated runtime, and
× Fast is how many times the actual runtime was quicker compared to the simulated
runtime.

100

Table 8.: Actual and simulated runtimes for Random on synthetic functions.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 1.3e+1/ 7.2e+6/ 5.5e+5 1.7e+1/ 3.6e+6/ 2.1e+5 2.1e+1/ 1.8e+6/ 8.5e+4 3.7e+1/ 9.0e+5/ 2.4e+4
2 1.4e+1/ 7.2e+6/ 5.0e+5 1.8e+1/ 3.6e+6/ 2.0e+5 2.1e+1/ 1.8e+6/ 8.5e+4 3.7e+1/ 9.0e+5/ 2.5e+4
3 1.4e+1/ 7.2e+6/ 5.1e+5 1.9e+1/ 3.6e+6/ 1.9e+5 2.2e+1/ 1.8e+6/ 8.2e+4 4.0e+1/ 9.0e+5/ 2.3e+4

Table 9.: Actual and simulated runtimes for HyperBand on synthetic functions.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 1.3e+2/ 5.2e+6/ 4.1e+4 1.6e+2/ 2.6e+6/ 1.6e+4 2.0e+2/ 1.3e+6/ 6.5e+3 3.0e+2/ 6.5e+5/ 2.2e+3
2 1.3e+2/ 5.5e+6/ 4.1e+4 1.7e+2/ 2.8e+6/ 1.6e+4 2.1e+2/ 1.4e+6/ 6.5e+3 3.1e+2/ 6.9e+5/ 2.2e+3
3 1.5e+2/ 5.7e+6/ 3.7e+4 2.0e+2/ 2.9e+6/ 1.5e+4 2.4e+2/ 1.4e+6/ 6.0e+3 3.4e+2/ 7.1e+5/ 2.1e+3

Table 10.: Actual and simulated runtimes for TPE on synthetic functions.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 2.2e+0/ 7.2e+5/ 3.2e+5 3.6e+0/ 3.6e+5/ 1.0e+5 4.7e+0/ 1.8e+5/ 3.9e+4 9.6e+0/ 9.4e+4/ 9.8e+3
2 3.4e+0/ 7.2e+5/ 2.1e+5 4.9e+0/ 3.6e+5/ 7.5e+4 6.3e+0/ 1.8e+5/ 2.9e+4 1.2e+1/ 9.4e+4/ 7.6e+3
3 5.5e+0/ 7.2e+5/ 1.3e+5 8.2e+0/ 3.6e+5/ 4.4e+4 1.1e+1/ 1.8e+5/ 1.7e+4 2.0e+1/ 9.4e+4/ 4.7e+3

Table 11.: Actual and simulated runtimes for BOHB on synthetic functions.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 1.7e+1/ 5.1e+5/ 3.0e+4 1.9e+1/ 2.6e+5/ 1.3e+4 2.5e+1/ 1.3e+5/ 5.1e+3 3.7e+1/ 6.8e+4/ 1.8e+3
2 2.0e+1/ 5.4e+5/ 2.6e+4 2.2e+1/ 2.7e+5/ 1.2e+4 2.9e+1/ 1.4e+5/ 4.7e+3 4.3e+1/ 7.2e+4/ 1.7e+3
3 2.7e+1/ 5.6e+5/ 2.1e+4 3.0e+1/ 2.8e+5/ 9.3e+3 3.9e+1/ 1.4e+5/ 3.6e+3 5.6e+1/ 7.4e+4/ 1.3e+3

Table 12.: Actual and simulated runtimes for HEBO on synthetic functions.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 2.3e+3/ 7.2e+5/ 3.2e+2 2.2e+3/ 3.6e+5/ 1.7e+2 2.2e+3/ 1.8e+5/ 8.1e+1 2.2e+3/ 9.0e+4/ 4.2e+1
2 3.0e+3/ 7.2e+5/ 2.4e+2 2.8e+3/ 3.6e+5/ 1.3e+2 2.9e+3/ 1.8e+5/ 6.3e+1 2.9e+3/ 9.1e+4/ 3.2e+1
3 4.0e+3/ 7.2e+5/ 1.8e+2 4.0e+3/ 3.6e+5/ 9.0e+1 3.8e+3/ 1.8e+5/ 4.8e+1 4.3e+3/ 9.1e+4/ 2.1e+1

101

Table 13.: Actual and simulated runtimes for DEHB on synthetic functions.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 3.1e+0/ 5.7e+5/ 1.8e+5 2.3e+1/ 2.8e+5/ 1.2e+4 2.5e+1/ 1.4e+5/ 5.8e+3 2.7e+1/ 7.5e+4/ 2.8e+3
2 3.3e+0/ 6.1e+5/ 1.8e+5 2.3e+1/ 3.1e+5/ 1.3e+4 2.5e+1/ 1.5e+5/ 6.2e+3 2.8e+1/ 8.1e+4/ 2.9e+3
3 3.1e+0/ 6.4e+5/ 2.1e+5 2.3e+1/ 3.2e+5/ 1.4e+4 2.5e+1/ 1.6e+5/ 6.5e+3 2.8e+1/ 8.4e+4/ 3.0e+3

Table 14.: Actual and simulated runtimes for NePS on synthetic functions.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 5.4e+2/ 5.1e+5/ 9.5e+2 5.5e+2/ 2.7e+5/ 4.9e+2 6.3e+2/ 1.4e+5/ 2.2e+2 6.8e+2/ 7.1e+4/ 1.0e+2
2 5.6e+2/ 5.4e+5/ 9.6e+2 5.9e+2/ 2.9e+5/ 4.9e+2 6.7e+2/ 1.5e+5/ 2.2e+2 7.4e+2/ 7.6e+4/ 1.0e+2
3 6.2e+2/ 5.6e+5/ 9.1e+2 6.4e+2/ 3.0e+5/ 4.6e+2 7.2e+2/ 1.5e+5/ 2.2e+2 9.3e+2/ 8.0e+4/ 8.6e+1

Table 15.: Actual and simulated runtimes for SMAC on synthetic functions.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 1.8e+1/ 5.0e+5/ 2.9e+4 3.8e+1/ 2.6e+5/ 6.8e+3 3.9e+1/ 1.4e+5/ 3.4e+3 4.2e+1/ 6.9e+4/ 1.7e+3
2 2.1e+1/ 5.3e+5/ 2.5e+4 4.3e+1/ 2.8e+5/ 6.5e+3 4.5e+1/ 1.5e+5/ 3.3e+3 4.8e+1/ 7.5e+4/ 1.6e+3
3 3.4e+1/ 5.5e+5/ 1.6e+4 5.9e+1/ 2.9e+5/ 5.0e+3 6.2e+1/ 1.5e+5/ 2.5e+3 6.8e+1/ 7.9e+4/ 1.2e+3

Table 16.: Actual and simulated runtimes for Random on HPOBench.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 1.3e+1/ 7.5e+4/ 5.6e+3 1.8e+1/ 4.0e+4/ 2.2e+3 2.1e+1/ 2.0e+4/ 9.5e+2 3.8e+1/ 1.1e+4/ 2.9e+2
2 1.3e+1/ 1.3e+5/ 9.6e+3 1.8e+1/ 6.3e+4/ 3.5e+3 2.2e+1/ 3.3e+4/ 1.6e+3 3.8e+1/ 1.8e+4/ 4.9e+2
3 1.3e+1/ 2.1e+5/ 1.6e+4 1.7e+1/ 1.0e+5/ 6.0e+3 2.1e+1/ 5.2e+4/ 2.4e+3 3.8e+1/ 3.1e+4/ 8.2e+2
4 1.3e+1/ 1.3e+5/ 9.7e+3 1.8e+1/ 6.3e+4/ 3.5e+3 2.2e+1/ 3.3e+4/ 1.5e+3 3.7e+1/ 1.9e+4/ 5.2e+2
5 1.3e+1/ 3.5e+5/ 2.6e+4 1.8e+1/ 1.8e+5/ 9.8e+3 2.1e+1/ 9.2e+4/ 4.3e+3 3.8e+1/ 4.9e+4/ 1.3e+3
6 1.3e+1/ 1.1e+6/ 8.2e+4 1.7e+1/ 5.6e+5/ 3.2e+4 2.1e+1/ 2.8e+5/ 1.3e+4 3.8e+1/ 1.6e+5/ 4.3e+3
7 1.3e+1/ 3.3e+5/ 2.4e+4 1.8e+1/ 1.7e+5/ 9.7e+3 2.2e+1/ 8.6e+4/ 4.0e+3 3.8e+1/ 5.1e+4/ 1.3e+3
8 1.3e+1/ 1.2e+5/ 8.9e+3 1.8e+1/ 5.9e+4/ 3.3e+3 2.2e+1/ 3.0e+4/ 1.4e+3 3.8e+1/ 1.6e+4/ 4.2e+2

102

Table 17.: Actual and simulated runtimes for HyperBand on HPOBench.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 1.4e+2/ 8.8e+4/ 6.4e+2 1.5e+2/ 4.5e+4/ 2.9e+2 1.9e+2/ 2.3e+4/ 1.2e+2 3.0e+2/ 1.2e+4/ 4.1e+1
2 1.4e+2/ 1.4e+5/ 9.9e+2 1.5e+2/ 7.0e+4/ 4.5e+2 1.9e+2/ 3.5e+4/ 1.8e+2 3.0e+2/ 1.9e+4/ 6.4e+1
3 1.4e+2/ 2.2e+5/ 1.6e+3 1.5e+2/ 1.1e+5/ 7.4e+2 1.9e+2/ 5.8e+4/ 3.0e+2 3.0e+2/ 3.1e+4/ 1.0e+2
4 1.4e+2/ 1.4e+5/ 1.0e+3 1.5e+2/ 7.1e+4/ 4.6e+2 1.9e+2/ 3.6e+4/ 1.9e+2 3.0e+2/ 1.9e+4/ 6.4e+1
5 1.3e+2/ 4.1e+5/ 3.1e+3 1.5e+2/ 2.0e+5/ 1.3e+3 1.9e+2/ 1.0e+5/ 5.2e+2 3.0e+2/ 5.6e+4/ 1.9e+2
6 1.4e+2/ 1.3e+6/ 9.7e+3 1.5e+2/ 6.8e+5/ 4.5e+3 1.9e+2/ 3.5e+5/ 1.8e+3 3.0e+2/ 1.7e+5/ 5.9e+2
7 1.3e+2/ 3.8e+5/ 2.9e+3 1.5e+2/ 1.9e+5/ 1.2e+3 1.9e+2/ 9.3e+4/ 4.8e+2 3.0e+2/ 5.1e+4/ 1.7e+2
8 1.4e+2/ 1.3e+5/ 9.9e+2 1.6e+2/ 6.7e+4/ 4.3e+2 1.9e+2/ 3.4e+4/ 1.8e+2 3.0e+2/ 1.8e+4/ 6.0e+1

Table 18.: Actual and simulated runtimes for TPE on HPOBench.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 5.6e+0/ 1.3e+4/ 2.3e+3 8.2e+0/ 7.4e+3/ 9.1e+2 1.1e+1/ 3.1e+3/ 2.9e+2 1.9e+1/ 2.8e+3/ 1.5e+2
2 5.5e+0/ 7.4e+4/ 1.3e+4 8.4e+0/ 2.3e+4/ 2.7e+3 1.1e+1/ 9.5e+3/ 8.8e+2 1.8e+1/ 6.6e+3/ 3.6e+2
3 5.7e+0/ 4.9e+4/ 8.7e+3 8.1e+0/ 1.0e+4/ 1.3e+3 1.1e+1/ 8.1e+3/ 7.5e+2 1.8e+1/ 7.7e+3/ 4.4e+2
4 5.6e+0/ 5.9e+3/ 1.0e+3 8.2e+0/ 5.2e+3/ 6.4e+2 1.1e+1/ 4.4e+3/ 4.2e+2 1.8e+1/ 2.9e+3/ 1.6e+2
5 5.5e+0/ 1.1e+5/ 2.1e+4 8.4e+0/ 5.7e+4/ 6.8e+3 1.1e+1/ 3.6e+4/ 3.4e+3 1.9e+1/ 2.0e+4/ 1.0e+3
6 5.5e+0/ 7.2e+5/ 1.3e+5 8.5e+0/ 2.6e+5/ 3.0e+4 1.1e+1/ 2.2e+5/ 2.1e+4 1.9e+1/ 1.0e+5/ 5.4e+3
7 5.5e+0/ 7.7e+4/ 1.4e+4 8.2e+0/ 5.8e+4/ 7.1e+3 1.1e+1/ 3.3e+4/ 3.0e+3 1.8e+1/ 1.7e+4/ 9.4e+2
8 5.6e+0/ 2.2e+4/ 3.9e+3 8.3e+0/ 2.4e+4/ 2.8e+3 1.1e+1/ 6.4e+3/ 5.8e+2 1.9e+1/ 5.8e+3/ 3.1e+2

Table 19.: Actual and simulated runtimes for BOHB on HPOBench.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 2.4e+1/ 1.1e+4/ 4.7e+2 2.7e+1/ 8.0e+3/ 3.0e+2 3.5e+1/ 2.8e+3/ 8.1e+1 5.1e+1/ 2.0e+3/ 3.9e+1
2 2.5e+1/ 4.5e+4/ 1.8e+3 2.7e+1/ 2.2e+4/ 8.2e+2 3.6e+1/ 1.0e+4/ 2.8e+2 5.1e+1/ 4.4e+3/ 8.6e+1
3 2.5e+1/ 5.7e+4/ 2.3e+3 2.7e+1/ 2.1e+4/ 8.0e+2 3.6e+1/ 9.2e+3/ 2.6e+2 5.1e+1/ 4.9e+3/ 9.7e+1
4 2.5e+1/ 1.6e+4/ 6.4e+2 2.7e+1/ 7.0e+3/ 2.6e+2 3.5e+1/ 4.2e+3/ 1.2e+2 5.2e+1/ 2.1e+3/ 4.0e+1
5 2.5e+1/ 1.4e+5/ 5.7e+3 2.7e+1/ 6.7e+4/ 2.5e+3 3.6e+1/ 2.7e+4/ 7.4e+2 5.1e+1/ 1.1e+4/ 2.2e+2
6 2.5e+1/ 5.0e+5/ 2.0e+4 2.7e+1/ 2.0e+5/ 7.2e+3 3.5e+1/ 1.0e+5/ 2.9e+3 5.2e+1/ 3.5e+4/ 6.8e+2
7 2.4e+1/ 1.6e+5/ 6.3e+3 2.7e+1/ 6.3e+4/ 2.3e+3 3.6e+1/ 2.4e+4/ 6.8e+2 5.2e+1/ 1.3e+4/ 2.4e+2
8 2.5e+1/ 3.9e+4/ 1.6e+3 2.7e+1/ 1.2e+4/ 4.4e+2 3.6e+1/ 1.0e+4/ 2.8e+2 5.1e+1/ 3.3e+3/ 6.4e+1

103

Table 20.: Actual and simulated runtimes for HEBO on HPOBench.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 3.4e+3/ 4.0e+4/ 1.2e+1 3.5e+3/ 1.7e+4/ 4.7e+0 3.6e+3/ 1.0e+4/ 2.9e+0 3.5e+3/ 5.2e+3/ 1.5e+0
2 3.5e+3/ 1.2e+5/ 3.5e+1 3.4e+3/ 5.1e+4/ 1.5e+1 3.5e+3/ 2.8e+4/ 8.1e+0 3.5e+3/ 1.5e+4/ 4.2e+0
3 3.5e+3/ 5.8e+4/ 1.7e+1 3.5e+3/ 3.1e+4/ 8.9e+0 3.8e+3/ 1.8e+4/ 4.9e+0 3.5e+3/ 1.0e+4/ 2.8e+0
4 3.4e+3/ 2.8e+4/ 8.3e+0 3.5e+3/ 1.7e+4/ 4.8e+0 3.5e+3/ 8.4e+3/ 2.4e+0 3.7e+3/ 4.6e+3/ 1.3e+0
5 3.3e+3/ 2.1e+5/ 6.5e+1 3.3e+3/ 1.3e+5/ 3.9e+1 3.2e+3/ 5.0e+4/ 1.5e+1 3.3e+3/ 3.3e+4/ 1.0e+1
6 3.1e+3/ 6.3e+5/ 2.0e+2 3.2e+3/ 4.4e+5/ 1.4e+2 3.2e+3/ 2.0e+5/ 6.4e+1 3.2e+3/ 9.7e+4/ 3.1e+1
7 3.3e+3/ 2.0e+5/ 6.0e+1 3.2e+3/ 9.8e+4/ 3.1e+1 3.1e+3/ 5.7e+4/ 1.8e+1 3.4e+3/ 2.3e+4/ 6.9e+0
8 3.4e+3/ 6.2e+4/ 1.8e+1 3.4e+3/ 2.8e+4/ 8.3e+0 3.5e+3/ 1.3e+4/ 3.7e+0 3.5e+3/ 7.6e+3/ 2.2e+0

Table 21.: Actual and simulated runtimes for DEHB on HPOBench.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 3.1e+0/ 6.1e+3/ 2.0e+3 2.4e+1/ 3.2e+3/ 1.4e+2 2.6e+1/ 1.8e+3/ 6.7e+1 2.9e+1/ 1.1e+3/ 3.9e+1
2 3.1e+0/ 1.4e+4/ 4.5e+3 2.4e+1/ 5.9e+3/ 2.4e+2 2.6e+1/ 2.9e+3/ 1.1e+2 3.0e+1/ 1.6e+3/ 5.2e+1
3 3.1e+0/ 1.6e+4/ 5.1e+3 2.4e+1/ 9.5e+3/ 3.9e+2 2.6e+1/ 5.7e+3/ 2.1e+2 3.0e+1/ 3.3e+3/ 1.1e+2
4 3.1e+0/ 8.1e+3/ 2.6e+3 2.4e+1/ 5.9e+3/ 2.4e+2 2.6e+1/ 2.3e+3/ 8.7e+1 2.9e+1/ 1.3e+3/ 4.5e+1
5 3.1e+0/ 4.9e+4/ 1.6e+4 2.4e+1/ 2.8e+4/ 1.2e+3 2.6e+1/ 1.3e+4/ 4.9e+2 2.9e+1/ 6.3e+3/ 2.2e+2
6 3.1e+0/ 1.9e+5/ 6.1e+4 2.4e+1/ 9.7e+4/ 4.0e+3 2.6e+1/ 4.6e+4/ 1.7e+3 3.0e+1/ 2.5e+4/ 8.5e+2
7 3.1e+0/ 3.2e+4/ 1.0e+4 2.4e+1/ 2.4e+4/ 1.0e+3 2.6e+1/ 9.4e+3/ 3.6e+2 2.9e+1/ 5.2e+3/ 1.8e+2
8 3.1e+0/ 1.5e+4/ 4.9e+3 2.4e+1/ 6.5e+3/ 2.7e+2 2.7e+1/ 3.1e+3/ 1.2e+2 2.9e+1/ 1.3e+3/ 4.4e+1

Table 22.: Actual and simulated runtimes for NePS on HPOBench.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 6.1e+2/ 9.3e+3/ 1.5e+1 7.9e+2/ 4.9e+3/ 6.3e+0 1.3e+3/ 3.0e+3/ 2.3e+0 1.6e+3/ 1.9e+3/ 1.2e+0
2 6.1e+2/ 1.4e+4/ 2.3e+1 7.3e+2/ 7.1e+3/ 9.8e+0 1.0e+3/ 4.0e+3/ 3.8e+0 1.9e+3/ 2.5e+3/ 1.3e+0
3 6.1e+2/ 2.2e+4/ 3.6e+1 7.3e+2/ 1.3e+4/ 1.8e+1 1.1e+3/ 6.9e+3/ 6.2e+0 1.8e+3/ 3.7e+3/ 2.0e+0
4 6.1e+2/ 1.4e+4/ 2.3e+1 7.8e+2/ 7.2e+3/ 9.3e+0 1.2e+3/ 4.5e+3/ 3.8e+0 1.9e+3/ 2.5e+3/ 1.3e+0
5 6.1e+2/ 4.1e+4/ 6.7e+1 6.8e+2/ 2.1e+4/ 3.1e+1 9.2e+2/ 1.2e+4/ 1.3e+1 1.8e+3/ 6.4e+3/ 3.6e+0
6 6.1e+2/ 1.3e+5/ 2.1e+2 6.4e+2/ 7.5e+4/ 1.2e+2 7.5e+2/ 3.8e+4/ 5.0e+1 1.2e+3/ 1.8e+4/ 1.6e+1
7 6.1e+2/ 3.8e+4/ 6.2e+1 6.8e+2/ 2.0e+4/ 3.0e+1 1.0e+3/ 9.4e+3/ 9.4e+0 1.8e+3/ 6.2e+3/ 3.4e+0
8 6.1e+2/ 1.4e+4/ 2.3e+1 7.4e+2/ 7.9e+3/ 1.1e+1 1.1e+3/ 4.0e+3/ 3.6e+0 1.8e+3/ 2.4e+3/ 1.4e+0

104

Table 23.: Actual and simulated runtimes for SMAC on HPOBench.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 3.1e+1/ 1.1e+4/ 3.6e+2 5.5e+1/ 6.1e+3/ 1.1e+2 5.9e+1/ 3.0e+3/ 5.1e+1 6.6e+1/ 2.4e+3/ 3.6e+1
2 3.1e+1/ 1.8e+4/ 5.8e+2 5.5e+1/ 1.2e+4/ 2.2e+2 5.9e+1/ 5.7e+3/ 9.6e+1 6.5e+1/ 3.0e+3/ 4.6e+1
3 3.4e+1/ 2.8e+4/ 8.4e+2 5.7e+1/ 1.5e+4/ 2.6e+2 6.0e+1/ 1.1e+4/ 1.9e+2 6.6e+1/ 4.1e+3/ 6.1e+1
4 3.2e+1/ 1.5e+4/ 4.7e+2 5.5e+1/ 9.0e+3/ 1.6e+2 5.9e+1/ 4.8e+3/ 8.1e+1 6.6e+1/ 3.6e+3/ 5.4e+1
5 3.2e+1/ 8.3e+4/ 2.6e+3 5.6e+1/ 4.7e+4/ 8.5e+2 6.0e+1/ 2.3e+4/ 3.8e+2 6.5e+1/ 1.1e+4/ 1.7e+2
6 3.2e+1/ 2.4e+5/ 7.6e+3 5.6e+1/ 1.2e+5/ 2.2e+3 5.9e+1/ 7.2e+4/ 1.2e+3 6.6e+1/ 3.8e+4/ 5.8e+2
7 3.2e+1/ 5.2e+4/ 1.6e+3 5.6e+1/ 4.6e+4/ 8.1e+2 5.9e+1/ 1.9e+4/ 3.2e+2 6.6e+1/ 1.0e+4/ 1.6e+2
8 3.2e+1/ 1.8e+4/ 5.6e+2 5.6e+1/ 1.2e+4/ 2.2e+2 5.9e+1/ 5.4e+3/ 9.3e+1 6.6e+1/ 3.1e+3/ 4.6e+1

Table 24.: Actual and simulated runtimes for Random on HPOlib.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 1.4e+1/ 1.1e+6/ 7.7e+4 2.1e+1/ 5.4e+5/ 2.6e+4 2.5e+1/ 2.7e+5/ 1.1e+4 4.2e+1/ 1.4e+5/ 3.2e+3
2 1.4e+1/ 5.6e+5/ 4.0e+4 2.1e+1/ 2.8e+5/ 1.4e+4 2.4e+1/ 1.4e+5/ 5.8e+3 4.3e+1/ 7.1e+4/ 1.6e+3
3 1.4e+1/ 1.6e+5/ 1.1e+4 2.1e+1/ 8.1e+4/ 3.9e+3 2.6e+1/ 4.1e+4/ 1.6e+3 4.2e+1/ 2.1e+4/ 4.9e+2
4 1.4e+1/ 8.3e+4/ 5.9e+3 2.1e+1/ 4.1e+4/ 2.0e+3 2.5e+1/ 2.1e+4/ 8.3e+2 4.3e+1/ 1.0e+4/ 2.4e+2

Table 25.: Actual and simulated runtimes for HyperBand on HPOlib.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 1.5e+2/ 8.2e+5/ 5.5e+3 1.9e+2/ 4.2e+5/ 2.2e+3 2.3e+2/ 2.1e+5/ 8.8e+2 3.4e+2/ 1.1e+5/ 3.1e+2
2 1.5e+2/ 4.4e+5/ 2.9e+3 1.9e+2/ 2.2e+5/ 1.2e+3 2.4e+2/ 1.1e+5/ 4.7e+2 3.4e+2/ 5.5e+4/ 1.6e+2
3 1.6e+2/ 1.3e+5/ 8.1e+2 1.9e+2/ 6.4e+4/ 3.3e+2 2.4e+2/ 3.2e+4/ 1.4e+2 3.4e+2/ 1.6e+4/ 4.7e+1
4 1.6e+2/ 6.6e+4/ 4.2e+2 1.9e+2/ 3.3e+4/ 1.7e+2 2.4e+2/ 1.6e+4/ 7.0e+1 3.4e+2/ 8.3e+3/ 2.4e+1

Table 26.: Actual and simulated runtimes for TPE on HPOlib.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 6.8e+0/ 1.6e+5/ 2.3e+4 1.0e+1/ 8.2e+4/ 7.9e+3 1.3e+1/ 3.4e+4/ 2.6e+3 2.2e+1/ 1.9e+4/ 8.7e+2
2 6.7e+0/ 7.0e+4/ 1.0e+4 1.1e+1/ 3.5e+4/ 3.3e+3 1.3e+1/ 1.8e+4/ 1.4e+3 2.2e+1/ 9.0e+3/ 4.1e+2
3 6.7e+0/ 2.8e+4/ 4.1e+3 1.0e+1/ 1.3e+4/ 1.2e+3 1.4e+1/ 5.4e+3/ 4.0e+2 2.2e+1/ 2.7e+3/ 1.2e+2
4 6.7e+0/ 1.0e+4/ 1.6e+3 1.1e+1/ 6.1e+3/ 5.8e+2 1.3e+1/ 2.9e+3/ 2.1e+2 2.3e+1/ 1.4e+3/ 5.9e+1

105

Table 27.: Actual and simulated runtimes for BOHB on HPOlib.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 3.0e+1/ 1.1e+5/ 3.9e+3 3.5e+1/ 5.8e+4/ 1.7e+3 4.7e+1/ 2.9e+4/ 6.1e+2 7.5e+1/ 1.4e+4/ 1.9e+2
2 3.0e+1/ 5.1e+4/ 1.7e+3 3.4e+1/ 2.7e+4/ 7.8e+2 4.7e+1/ 1.3e+4/ 2.7e+2 7.4e+1/ 7.1e+3/ 9.5e+1
3 3.0e+1/ 1.9e+4/ 6.2e+2 3.5e+1/ 9.6e+3/ 2.8e+2 4.8e+1/ 4.1e+3/ 8.6e+1 7.5e+1/ 2.2e+3/ 2.9e+1
4 3.0e+1/ 1.0e+4/ 3.4e+2 3.4e+1/ 4.5e+3/ 1.3e+2 4.8e+1/ 2.4e+3/ 5.0e+1 7.5e+1/ 9.8e+2/ 1.3e+1

Table 28.: Actual and simulated runtimes for HEBO on HPOlib.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 6.7e+3/ 1.6e+5/ 2.3e+1 6.7e+3/ 8.0e+4/ 1.2e+1 6.9e+3/ 4.1e+4/ 6.0e+0 7.1e+3/ 2.2e+4/ 3.0e+0
2 8.2e+3/ 7.2e+4/ 8.8e+0 8.0e+3/ 3.7e+4/ 4.7e+0 8.2e+3/ 2.0e+4/ 2.4e+0 8.1e+3/ 1.2e+4/ 1.5e+0
3 6.3e+3/ 3.0e+4/ 4.8e+0 6.3e+3/ 1.6e+4/ 2.5e+0 6.8e+3/ 9.8e+3/ 1.4e+0 6.6e+3/ 7.1e+3/ 1.1e+0
4 5.7e+3/ 1.8e+4/ 3.2e+0 6.1e+3/ 1.0e+4/ 1.7e+0 6.1e+3/ 7.0e+3/ 1.1e+0 6.2e+3/ 6.3e+3/ 1.0e+0

Table 29.: Actual and simulated runtimes for DEHB on HPOlib.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 3.2e+0/ 8.4e+4/ 2.7e+4 2.5e+1/ 4.3e+4/ 1.7e+3 2.7e+1/ 2.1e+4/ 7.7e+2 3.0e+1/ 1.1e+4/ 3.7e+2
2 3.2e+0/ 5.2e+4/ 1.6e+4 2.5e+1/ 2.5e+4/ 9.9e+2 2.8e+1/ 1.2e+4/ 4.5e+2 3.1e+1/ 6.2e+3/ 2.0e+2
3 3.2e+0/ 1.3e+4/ 4.2e+3 2.5e+1/ 6.8e+3/ 2.7e+2 2.8e+1/ 3.3e+3/ 1.2e+2 3.0e+1/ 1.7e+3/ 5.6e+1
4 3.2e+0/ 6.6e+3/ 2.1e+3 2.5e+1/ 3.4e+3/ 1.4e+2 2.8e+1/ 1.6e+3/ 5.9e+1 3.0e+1/ 8.5e+2/ 2.8e+1

Table 30.: Actual and simulated runtimes for NePS on HPOlib.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 7.1e+2/ 8.1e+4/ 1.1e+2 7.9e+2/ 4.3e+4/ 5.4e+1 9.6e+2/ 2.2e+4/ 2.2e+1 1.2e+3/ 1.1e+4/ 9.4e+0
2 7.1e+2/ 4.3e+4/ 6.1e+1 8.3e+2/ 2.3e+4/ 2.8e+1 1.1e+3/ 1.2e+4/ 1.1e+1 1.5e+3/ 6.3e+3/ 4.1e+0
3 7.1e+2/ 1.3e+4/ 1.8e+1 1.1e+3/ 7.1e+3/ 6.6e+0 1.6e+3/ 3.9e+3/ 2.5e+0 1.8e+3/ 2.3e+3/ 1.3e+0
4 7.1e+2/ 7.1e+3/ 9.9e+0 1.2e+3/ 4.1e+3/ 3.3e+0 1.7e+3/ 2.5e+3/ 1.5e+0 1.6e+3/ 1.6e+3/ 1.0e+0

106

Table 31.: Actual and simulated runtimes for SMAC on HPOlib.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 3.2e+1/ 1.0e+5/ 3.3e+3 5.7e+1/ 5.5e+4/ 9.6e+2 6.1e+1/ 2.8e+4/ 4.6e+2 6.6e+1/ 1.4e+4/ 2.2e+2
2 3.2e+1/ 4.8e+4/ 1.5e+3 5.6e+1/ 2.5e+4/ 4.4e+2 6.1e+1/ 1.4e+4/ 2.3e+2 6.6e+1/ 7.1e+3/ 1.1e+2
3 3.2e+1/ 1.5e+4/ 4.7e+2 5.7e+1/ 8.4e+3/ 1.5e+2 6.1e+1/ 4.2e+3/ 7.0e+1 6.5e+1/ 2.3e+3/ 3.5e+1
4 3.2e+1/ 7.3e+3/ 2.3e+2 5.7e+1/ 3.9e+3/ 6.9e+1 6.0e+1/ 1.9e+3/ 3.1e+1 6.6e+1/ 1.1e+3/ 1.7e+1

Table 32.: Actual and simulated runtimes for Random on JAHS-Bench-201.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 3.9e+1/ 1.4e+8/ 3.5e+6 6.1e+1/ 7.1e+7/ 1.2e+6 7.1e+1/ 3.5e+7/ 4.9e+5 1.0e+2/ 1.8e+7/ 1.7e+5
2 3.9e+1/ 2.1e+8/ 5.2e+6 6.4e+1/ 1.0e+8/ 1.6e+6 7.0e+1/ 5.2e+7/ 7.4e+5 1.1e+2/ 2.6e+7/ 2.4e+5
3 3.9e+1/ 2.3e+7/ 5.9e+5 6.2e+1/ 1.2e+7/ 1.9e+5 7.0e+1/ 5.9e+6/ 8.4e+4 1.1e+2/ 2.9e+6/ 2.8e+4

Table 33.: Actual and simulated runtimes for HyperBand on JAHS-Bench-201.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 3.1e+2/ 1.1e+8/ 3.6e+5 3.2e+2/ 5.6e+7/ 1.8e+5 3.6e+2/ 2.8e+7/ 7.7e+4 4.9e+2/ 1.4e+7/ 2.9e+4
2 3.1e+2/ 1.6e+8/ 5.3e+5 3.3e+2/ 8.1e+7/ 2.5e+5 3.8e+2/ 4.1e+7/ 1.1e+5 5.0e+2/ 2.0e+7/ 4.1e+4
3 3.1e+2/ 2.2e+7/ 6.9e+4 3.3e+2/ 1.1e+7/ 3.3e+4 3.7e+2/ 5.4e+6/ 1.5e+4 5.0e+2/ 2.7e+6/ 5.5e+3

Table 34.: Actual and simulated runtimes for TPE on JAHS-Bench-201.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 7.8e+0/ 2.1e+7/ 2.7e+6 1.2e+1/ 1.2e+7/ 9.4e+5 1.6e+1/ 6.4e+6/ 4.0e+5 2.6e+1/ 2.9e+6/ 1.1e+5
2 8.0e+0/ 2.9e+7/ 3.6e+6 1.2e+1/ 1.5e+7/ 1.2e+6 1.6e+1/ 7.6e+6/ 4.7e+5 2.8e+1/ 4.0e+6/ 1.5e+5
3 7.9e+0/ 1.8e+6/ 2.3e+5 1.2e+1/ 8.5e+5/ 6.9e+4 1.6e+1/ 4.8e+5/ 2.9e+4 2.7e+1/ 2.5e+5/ 9.4e+3

Table 35.: Actual and simulated runtimes for BOHB on JAHS-Bench-201.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 4.9e+1/ 1.3e+7/ 2.7e+5 5.3e+1/ 7.0e+6/ 1.3e+5 6.9e+1/ 3.5e+6/ 5.0e+4 1.1e+2/ 1.9e+6/ 1.7e+4
2 4.9e+1/ 1.9e+7/ 3.8e+5 5.3e+1/ 9.2e+6/ 1.7e+5 7.0e+1/ 4.6e+6/ 6.6e+4 1.1e+2/ 2.5e+6/ 2.3e+4
3 4.9e+1/ 1.9e+6/ 3.8e+4 5.4e+1/ 9.4e+5/ 1.8e+4 7.0e+1/ 4.7e+5/ 6.6e+3 1.1e+2/ 2.5e+5/ 2.2e+3

107

Table 36.: Actual and simulated runtimes for HEBO on JAHS-Bench-201.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 1.3e+4/ 3.4e+7/ 2.7e+3 1.3e+4/ 1.7e+7/ 1.3e+3 1.3e+4/ 8.8e+6/ 6.5e+2 1.3e+4/ 4.3e+6/ 3.3e+2
2 1.3e+4/ 3.1e+7/ 2.3e+3 1.3e+4/ 1.6e+7/ 1.2e+3 1.3e+4/ 7.9e+6/ 6.0e+2 1.3e+4/ 4.1e+6/ 3.1e+2
3 1.4e+4/ 1.7e+6/ 1.2e+2 1.4e+4/ 8.4e+5/ 6.1e+1 1.5e+4/ 4.1e+5/ 2.7e+1 1.4e+4/ 2.2e+5/ 1.5e+1

Table 37.: Actual and simulated runtimes for DEHB on JAHS-Bench-201.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 9.0e+0/ 1.7e+7/ 1.9e+6 2.2e+3/ 8.4e+6/ 3.7e+3 2.4e+3/ 4.2e+6/ 1.7e+3 2.6e+3/ 2.1e+6/ 8.1e+2
2 9.1e+0/ 2.2e+7/ 2.5e+6 1.9e+4/ 1.1e+7/ 5.5e+2 2.1e+4/ 5.4e+6/ 2.6e+2 2.3e+4/ 2.7e+6/ 1.2e+2
3 9.1e+0/ 2.3e+6/ 2.5e+5 1.4e+4/ 1.3e+6/ 9.0e+1 1.5e+4/ 6.0e+5/ 4.1e+1 1.6e+4/ 3.1e+5/ 1.9e+1

Table 38.: Actual and simulated runtimes for NePS on JAHS-Bench-201.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 7.7e+2/ 1.1e+7/ 1.4e+4 7.9e+2/ 5.7e+6/ 7.2e+3 8.7e+2/ 3.0e+6/ 3.4e+3 9.2e+2/ 1.5e+6/ 1.7e+3
2 7.8e+2/ 1.6e+7/ 2.1e+4 7.8e+2/ 8.4e+6/ 1.1e+4 8.7e+2/ 4.3e+6/ 4.9e+3 9.3e+2/ 2.3e+6/ 2.4e+3
3 7.8e+2/ 2.2e+6/ 2.8e+3 8.0e+2/ 1.1e+6/ 1.4e+3 8.8e+2/ 5.8e+5/ 6.6e+2 9.5e+2/ 3.0e+5/ 3.2e+2

108

Table 39.: Actual and simulated runtimes for Random on LCBench.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 1.1e+2/ 4.8e+5/ 4.5e+3 1.4e+2/ 2.4e+5/ 1.8e+3 1.5e+2/ 1.2e+5/ 7.9e+2 1.7e+2/ 6.1e+4/ 3.6e+2
2 1.1e+2/ 2.3e+6/ 2.2e+4 1.4e+2/ 1.2e+6/ 8.4e+3 1.6e+2/ 6.0e+5/ 3.8e+3 1.7e+2/ 3.0e+5/ 1.8e+3
3 1.1e+2/ 3.6e+5/ 3.4e+3 1.4e+2/ 1.8e+5/ 1.3e+3 1.5e+2/ 9.1e+4/ 5.9e+2 1.7e+2/ 4.6e+4/ 2.7e+2
4 1.1e+2/ 3.4e+5/ 3.1e+3 1.4e+2/ 1.7e+5/ 1.2e+3 1.5e+2/ 8.5e+4/ 5.5e+2 1.7e+2/ 4.3e+4/ 2.5e+2
5 1.1e+2/ 3.2e+5/ 3.0e+3 1.4e+2/ 1.6e+5/ 1.2e+3 1.5e+2/ 8.1e+4/ 5.3e+2 1.7e+2/ 4.1e+4/ 2.4e+2
6 1.1e+2/ 3.2e+5/ 3.0e+3 1.4e+2/ 1.6e+5/ 1.2e+3 1.5e+2/ 8.1e+4/ 5.3e+2 1.7e+2/ 4.1e+4/ 2.4e+2
7 1.1e+2/ 3.4e+5/ 3.1e+3 1.3e+2/ 1.7e+5/ 1.3e+3 1.5e+2/ 8.5e+4/ 5.6e+2 1.7e+2/ 4.3e+4/ 2.5e+2
8 1.1e+2/ 2.1e+5/ 2.0e+3 1.4e+2/ 1.1e+5/ 7.9e+2 1.5e+2/ 5.4e+4/ 3.5e+2 1.7e+2/ 2.7e+4/ 1.6e+2
9 1.1e+2/ 2.0e+5/ 1.9e+3 1.3e+2/ 1.0e+5/ 7.6e+2 1.5e+2/ 5.1e+4/ 3.3e+2 1.7e+2/ 2.6e+4/ 1.5e+2
10 1.1e+2/ 3.5e+5/ 3.2e+3 1.4e+2/ 1.7e+5/ 1.3e+3 1.5e+2/ 8.8e+4/ 5.7e+2 1.7e+2/ 4.4e+4/ 2.6e+2
11 1.1e+2/ 2.2e+5/ 2.1e+3 1.4e+2/ 1.1e+5/ 7.7e+2 1.5e+2/ 5.6e+4/ 3.6e+2 1.7e+2/ 2.8e+4/ 1.6e+2
12 1.1e+2/ 3.0e+5/ 2.8e+3 1.3e+2/ 1.5e+5/ 1.1e+3 1.5e+2/ 7.6e+4/ 4.9e+2 1.7e+2/ 3.9e+4/ 2.3e+2
13 1.1e+2/ 2.3e+5/ 2.1e+3 1.4e+2/ 1.1e+5/ 8.2e+2 1.6e+2/ 5.7e+4/ 3.7e+2 1.7e+2/ 2.9e+4/ 1.7e+2
14 1.1e+2/ 2.8e+5/ 2.6e+3 1.4e+2/ 1.4e+5/ 1.0e+3 1.6e+2/ 7.1e+4/ 4.6e+2 1.7e+2/ 3.6e+4/ 2.1e+2
15 1.1e+2/ 1.1e+6/ 1.0e+4 1.4e+2/ 5.5e+5/ 4.0e+3 1.5e+2/ 2.7e+5/ 1.8e+3 1.7e+2/ 1.4e+5/ 8.0e+2
16 1.1e+2/ 2.9e+5/ 2.7e+3 1.4e+2/ 1.4e+5/ 1.1e+3 1.6e+2/ 7.2e+4/ 4.7e+2 1.7e+2/ 3.7e+4/ 2.1e+2
17 1.1e+2/ 5.4e+5/ 4.9e+3 1.4e+2/ 2.7e+5/ 1.9e+3 1.5e+2/ 1.3e+5/ 8.7e+2 1.7e+2/ 6.7e+4/ 3.9e+2
18 1.1e+2/ 5.0e+5/ 4.6e+3 1.4e+2/ 2.5e+5/ 1.8e+3 1.5e+2/ 1.2e+5/ 8.1e+2 1.7e+2/ 6.3e+4/ 3.6e+2
19 1.1e+2/ 6.0e+5/ 5.6e+3 1.4e+2/ 3.0e+5/ 2.1e+3 1.6e+2/ 1.5e+5/ 9.5e+2 1.7e+2/ 7.6e+4/ 4.4e+2
20 1.1e+2/ 6.7e+5/ 6.2e+3 1.4e+2/ 3.3e+5/ 2.4e+3 1.5e+2/ 1.7e+5/ 1.1e+3 1.7e+2/ 8.5e+4/ 4.9e+2
21 1.1e+2/ 4.9e+5/ 4.5e+3 1.4e+2/ 2.4e+5/ 1.7e+3 1.5e+2/ 1.2e+5/ 7.8e+2 1.7e+2/ 6.1e+4/ 3.6e+2
22 1.1e+2/ 6.1e+5/ 5.6e+3 1.4e+2/ 3.0e+5/ 2.2e+3 1.5e+2/ 1.5e+5/ 1.0e+3 1.7e+2/ 7.9e+4/ 4.6e+2
23 1.1e+2/ 4.3e+5/ 4.0e+3 1.4e+2/ 2.1e+5/ 1.5e+3 1.5e+2/ 1.1e+5/ 6.9e+2 1.7e+2/ 5.3e+4/ 3.1e+2
24 1.1e+2/ 4.0e+6/ 3.7e+4 1.4e+2/ 2.0e+6/ 1.4e+4 1.5e+2/ 1.0e+6/ 6.6e+3 1.7e+2/ 5.0e+5/ 2.9e+3
25 1.1e+2/ 1.1e+6/ 9.7e+3 1.4e+2/ 5.3e+5/ 3.8e+3 1.5e+2/ 2.6e+5/ 1.7e+3 1.7e+2/ 1.3e+5/ 7.7e+2
26 1.1e+2/ 1.9e+6/ 1.8e+4 1.4e+2/ 9.6e+5/ 6.9e+3 1.5e+2/ 4.8e+5/ 3.1e+3 1.7e+2/ 2.4e+5/ 1.4e+3
27 1.1e+2/ 3.4e+5/ 3.1e+3 1.4e+2/ 1.7e+5/ 1.2e+3 1.5e+2/ 8.5e+4/ 5.5e+2 1.7e+2/ 4.3e+4/ 2.5e+2
28 1.1e+2/ 2.6e+5/ 2.4e+3 1.3e+2/ 1.3e+5/ 9.7e+2 1.5e+2/ 6.5e+4/ 4.2e+2 1.7e+2/ 3.3e+4/ 1.9e+2
29 1.1e+2/ 2.1e+6/ 1.9e+4 1.4e+2/ 1.1e+6/ 7.8e+3 1.6e+2/ 5.4e+5/ 3.4e+3 1.7e+2/ 2.7e+5/ 1.6e+3
30 1.1e+2/ 4.8e+6/ 4.4e+4 1.4e+2/ 2.4e+6/ 1.7e+4 1.5e+2/ 1.2e+6/ 7.8e+3 1.7e+2/ 6.1e+5/ 3.5e+3
31 1.1e+2/ 1.6e+5/ 1.5e+3 1.4e+2/ 8.0e+4/ 5.9e+2 1.5e+2/ 4.0e+4/ 2.6e+2 1.7e+2/ 2.0e+4/ 1.2e+2
32 1.1e+2/ 2.6e+5/ 2.3e+3 1.4e+2/ 1.3e+5/ 9.2e+2 1.5e+2/ 6.5e+4/ 4.2e+2 1.7e+2/ 3.2e+4/ 1.9e+2
33 1.1e+2/ 1.7e+6/ 1.6e+4 1.4e+2/ 8.6e+5/ 6.2e+3 1.6e+2/ 4.3e+5/ 2.8e+3 1.7e+2/ 2.2e+5/ 1.2e+3
34 1.1e+2/ 3.8e+5/ 3.5e+3 1.4e+2/ 1.9e+5/ 1.3e+3 1.6e+2/ 9.5e+4/ 6.1e+2 1.7e+2/ 4.8e+4/ 2.8e+2

109

Table 40.: Actual and simulated runtimes for HyperBand on LCBench.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 3.8e+2/ 4.0e+5/ 1.1e+3 4.3e+2/ 2.0e+5/ 4.7e+2 4.9e+2/ 1.0e+5/ 2.1e+2 6.0e+2/ 5.1e+4/ 8.5e+1
2 3.8e+2/ 1.9e+6/ 5.0e+3 4.3e+2/ 9.4e+5/ 2.2e+3 4.9e+2/ 4.8e+5/ 9.7e+2 6.0e+2/ 2.4e+5/ 4.0e+2
3 3.8e+2/ 3.1e+5/ 8.2e+2 4.3e+2/ 1.6e+5/ 3.6e+2 4.9e+2/ 7.8e+4/ 1.6e+2 6.0e+2/ 3.9e+4/ 6.5e+1
4 3.8e+2/ 2.8e+5/ 7.5e+2 4.3e+2/ 1.4e+5/ 3.3e+2 4.9e+2/ 7.0e+4/ 1.4e+2 6.0e+2/ 3.5e+4/ 5.9e+1
5 3.8e+2/ 2.4e+5/ 6.3e+2 4.3e+2/ 1.2e+5/ 2.8e+2 4.8e+2/ 6.0e+4/ 1.2e+2 6.0e+2/ 3.0e+4/ 5.0e+1
6 3.8e+2/ 2.6e+5/ 6.9e+2 4.3e+2/ 1.3e+5/ 3.1e+2 4.9e+2/ 6.6e+4/ 1.4e+2 6.0e+2/ 3.4e+4/ 5.6e+1
7 3.8e+2/ 3.0e+5/ 7.9e+2 4.3e+2/ 1.5e+5/ 3.5e+2 4.9e+2/ 7.5e+4/ 1.5e+2 6.0e+2/ 3.8e+4/ 6.3e+1
8 3.8e+2/ 1.8e+5/ 4.9e+2 4.3e+2/ 9.2e+4/ 2.1e+2 4.8e+2/ 4.6e+4/ 9.6e+1 6.0e+2/ 2.3e+4/ 3.9e+1
9 3.8e+2/ 1.6e+5/ 4.3e+2 4.3e+2/ 8.1e+4/ 1.9e+2 4.8e+2/ 4.1e+4/ 8.4e+1 6.0e+2/ 2.0e+4/ 3.4e+1
10 3.8e+2/ 2.7e+5/ 7.2e+2 4.3e+2/ 1.4e+5/ 3.2e+2 4.9e+2/ 6.8e+4/ 1.4e+2 6.0e+2/ 3.5e+4/ 5.7e+1
11 3.8e+2/ 1.9e+5/ 5.1e+2 4.4e+2/ 9.7e+4/ 2.2e+2 4.9e+2/ 4.9e+4/ 9.9e+1 6.0e+2/ 2.4e+4/ 4.0e+1
12 3.8e+2/ 2.5e+5/ 6.6e+2 4.3e+2/ 1.2e+5/ 2.9e+2 4.9e+2/ 6.2e+4/ 1.3e+2 6.0e+2/ 3.1e+4/ 5.2e+1
13 3.8e+2/ 2.1e+5/ 5.4e+2 4.3e+2/ 1.0e+5/ 2.4e+2 4.9e+2/ 5.1e+4/ 1.1e+2 6.0e+2/ 2.6e+4/ 4.3e+1
14 3.8e+2/ 2.3e+5/ 6.2e+2 4.4e+2/ 1.2e+5/ 2.7e+2 4.9e+2/ 5.9e+4/ 1.2e+2 6.0e+2/ 2.9e+4/ 4.9e+1
15 3.8e+2/ 7.7e+5/ 2.0e+3 4.3e+2/ 3.9e+5/ 9.0e+2 4.8e+2/ 1.9e+5/ 4.0e+2 6.0e+2/ 9.7e+4/ 1.6e+2
16 3.8e+2/ 2.6e+5/ 6.8e+2 4.4e+2/ 1.3e+5/ 3.0e+2 4.9e+2/ 6.4e+4/ 1.3e+2 6.0e+2/ 3.2e+4/ 5.3e+1
17 3.8e+2/ 4.2e+5/ 1.1e+3 4.4e+2/ 2.1e+5/ 4.9e+2 4.9e+2/ 1.1e+5/ 2.2e+2 6.0e+2/ 5.3e+4/ 8.9e+1
18 3.8e+2/ 4.0e+5/ 1.1e+3 4.3e+2/ 2.0e+5/ 4.6e+2 4.9e+2/ 1.0e+5/ 2.0e+2 6.0e+2/ 5.0e+4/ 8.3e+1
19 3.8e+2/ 5.2e+5/ 1.4e+3 4.4e+2/ 2.6e+5/ 5.9e+2 4.9e+2/ 1.3e+5/ 2.7e+2 6.0e+2/ 6.6e+4/ 1.1e+2
20 3.8e+2/ 5.3e+5/ 1.4e+3 4.3e+2/ 2.7e+5/ 6.2e+2 4.9e+2/ 1.3e+5/ 2.7e+2 6.0e+2/ 6.7e+4/ 1.1e+2
21 3.8e+2/ 4.1e+5/ 1.1e+3 4.4e+2/ 2.1e+5/ 4.8e+2 4.9e+2/ 1.0e+5/ 2.1e+2 6.0e+2/ 5.1e+4/ 8.5e+1
22 3.8e+2/ 4.7e+5/ 1.2e+3 4.3e+2/ 2.3e+5/ 5.4e+2 4.9e+2/ 1.2e+5/ 2.4e+2 6.0e+2/ 6.0e+4/ 9.9e+1
23 3.8e+2/ 3.4e+5/ 9.0e+2 4.3e+2/ 1.7e+5/ 4.0e+2 4.9e+2/ 8.6e+4/ 1.8e+2 6.0e+2/ 4.3e+4/ 7.1e+1
24 3.8e+2/ 3.3e+6/ 8.7e+3 4.3e+2/ 1.6e+6/ 3.8e+3 4.9e+2/ 8.2e+5/ 1.7e+3 6.0e+2/ 4.1e+5/ 6.9e+2
25 3.8e+2/ 8.1e+5/ 2.1e+3 4.3e+2/ 4.1e+5/ 9.4e+2 4.9e+2/ 2.0e+5/ 4.2e+2 6.0e+2/ 1.0e+5/ 1.7e+2
26 3.8e+2/ 1.5e+6/ 4.0e+3 4.3e+2/ 7.6e+5/ 1.8e+3 4.9e+2/ 3.8e+5/ 7.7e+2 6.0e+2/ 1.9e+5/ 3.1e+2
27 3.8e+2/ 2.7e+5/ 7.0e+2 4.3e+2/ 1.3e+5/ 3.1e+2 4.9e+2/ 6.7e+4/ 1.4e+2 6.0e+2/ 3.3e+4/ 5.5e+1
28 3.8e+2/ 2.1e+5/ 5.5e+2 4.3e+2/ 1.1e+5/ 2.4e+2 4.9e+2/ 5.2e+4/ 1.1e+2 6.0e+2/ 2.6e+4/ 4.4e+1
29 3.8e+2/ 1.6e+6/ 4.2e+3 4.3e+2/ 7.9e+5/ 1.8e+3 4.9e+2/ 3.9e+5/ 8.1e+2 6.0e+2/ 2.0e+5/ 3.3e+2
30 3.8e+2/ 3.5e+6/ 9.1e+3 4.4e+2/ 1.7e+6/ 4.0e+3 4.9e+2/ 8.6e+5/ 1.7e+3 6.0e+2/ 4.3e+5/ 7.2e+2
31 3.8e+2/ 1.5e+5/ 3.8e+2 4.3e+2/ 7.3e+4/ 1.7e+2 4.9e+2/ 3.6e+4/ 7.4e+1 6.0e+2/ 1.8e+4/ 3.0e+1
32 3.8e+2/ 2.2e+5/ 5.9e+2 4.4e+2/ 1.1e+5/ 2.5e+2 4.9e+2/ 5.5e+4/ 1.1e+2 6.0e+2/ 2.8e+4/ 4.6e+1
33 3.8e+2/ 1.4e+6/ 3.6e+3 4.3e+2/ 6.8e+5/ 1.6e+3 4.9e+2/ 3.4e+5/ 7.0e+2 6.0e+2/ 1.7e+5/ 2.8e+2
34 3.8e+2/ 3.3e+5/ 8.7e+2 4.3e+2/ 1.6e+5/ 3.8e+2 4.9e+2/ 8.2e+4/ 1.7e+2 6.0e+2/ 4.1e+4/ 6.8e+1

110

Table 41.: Actual and simulated runtimes for TPE on LCBench.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 1.6e+1/ 3.9e+4/ 2.4e+3 2.1e+1/ 2.0e+4/ 9.6e+2 2.6e+1/ 9.5e+3/ 3.7e+2 3.9e+1/ 4.9e+3/ 1.3e+2
2 1.6e+1/ 2.7e+5/ 1.6e+4 2.1e+1/ 1.4e+5/ 6.4e+3 2.6e+1/ 6.3e+4/ 2.5e+3 3.9e+1/ 2.8e+4/ 7.2e+2
3 1.6e+1/ 6.8e+4/ 4.1e+3 2.2e+1/ 2.6e+4/ 1.2e+3 2.5e+1/ 1.6e+4/ 6.4e+2 3.9e+1/ 7.7e+3/ 2.0e+2
4 1.6e+1/ 2.9e+4/ 1.7e+3 2.1e+1/ 1.2e+4/ 5.7e+2 2.5e+1/ 7.5e+3/ 2.9e+2 3.8e+1/ 3.5e+3/ 9.2e+1
5 1.6e+1/ 1.5e+4/ 9.3e+2 2.0e+1/ 9.4e+3/ 4.6e+2 2.6e+1/ 4.0e+3/ 1.5e+2 3.8e+1/ 2.3e+3/ 6.0e+1
6 1.6e+1/ 2.1e+4/ 1.3e+3 2.1e+1/ 1.1e+4/ 5.5e+2 2.5e+1/ 5.8e+3/ 2.3e+2 3.9e+1/ 3.5e+3/ 9.2e+1
7 1.6e+1/ 4.0e+4/ 2.4e+3 2.1e+1/ 2.0e+4/ 9.7e+2 2.6e+1/ 9.4e+3/ 3.7e+2 3.8e+1/ 5.0e+3/ 1.3e+2
8 1.7e+1/ 3.3e+4/ 2.0e+3 2.1e+1/ 1.8e+4/ 8.4e+2 2.6e+1/ 7.2e+3/ 2.8e+2 3.8e+1/ 3.9e+3/ 1.0e+2
9 1.6e+1/ 1.5e+4/ 9.2e+2 2.1e+1/ 7.6e+3/ 3.7e+2 2.6e+1/ 4.2e+3/ 1.6e+2 3.9e+1/ 2.5e+3/ 6.4e+1
10 1.6e+1/ 3.0e+4/ 1.8e+3 2.1e+1/ 1.6e+4/ 7.4e+2 2.6e+1/ 8.3e+3/ 3.2e+2 3.9e+1/ 4.1e+3/ 1.1e+2
11 1.6e+1/ 4.0e+4/ 2.5e+3 2.2e+1/ 2.0e+4/ 9.3e+2 2.6e+1/ 1.1e+4/ 4.3e+2 3.9e+1/ 4.7e+3/ 1.2e+2
12 1.6e+1/ 5.3e+4/ 3.3e+3 2.2e+1/ 2.6e+4/ 1.2e+3 2.5e+1/ 1.3e+4/ 5.1e+2 3.8e+1/ 6.3e+3/ 1.6e+2
13 1.6e+1/ 2.8e+4/ 1.7e+3 2.2e+1/ 1.5e+4/ 6.7e+2 2.5e+1/ 6.6e+3/ 2.6e+2 3.8e+1/ 4.3e+3/ 1.1e+2
14 1.6e+1/ 3.6e+4/ 2.2e+3 2.1e+1/ 1.7e+4/ 7.8e+2 2.6e+1/ 8.6e+3/ 3.3e+2 3.8e+1/ 4.2e+3/ 1.1e+2
15 1.6e+1/ 7.8e+4/ 4.8e+3 2.1e+1/ 3.2e+4/ 1.5e+3 2.6e+1/ 1.7e+4/ 6.7e+2 3.8e+1/ 9.5e+3/ 2.5e+2
16 1.6e+1/ 3.8e+4/ 2.3e+3 2.1e+1/ 1.9e+4/ 8.9e+2 2.6e+1/ 1.2e+4/ 4.5e+2 3.8e+1/ 5.3e+3/ 1.4e+2
17 1.6e+1/ 6.8e+4/ 4.2e+3 2.1e+1/ 3.4e+4/ 1.6e+3 2.5e+1/ 1.7e+4/ 6.7e+2 3.8e+1/ 9.6e+3/ 2.5e+2
18 1.7e+1/ 5.7e+4/ 3.4e+3 2.1e+1/ 2.7e+4/ 1.3e+3 2.5e+1/ 1.4e+4/ 5.5e+2 3.9e+1/ 7.1e+3/ 1.8e+2
19 1.6e+1/ 1.3e+5/ 8.0e+3 2.2e+1/ 7.1e+4/ 3.3e+3 2.5e+1/ 4.1e+4/ 1.6e+3 3.8e+1/ 1.9e+4/ 4.9e+2
20 1.6e+1/ 8.2e+4/ 5.0e+3 2.1e+1/ 4.2e+4/ 2.0e+3 2.6e+1/ 2.0e+4/ 7.6e+2 3.8e+1/ 9.6e+3/ 2.5e+2
21 1.6e+1/ 5.1e+4/ 3.1e+3 2.1e+1/ 1.8e+4/ 8.6e+2 2.6e+1/ 1.3e+4/ 4.9e+2 3.8e+1/ 5.0e+3/ 1.3e+2
22 1.6e+1/ 2.9e+4/ 1.8e+3 2.1e+1/ 1.8e+4/ 8.6e+2 2.5e+1/ 7.5e+3/ 3.0e+2 3.8e+1/ 4.2e+3/ 1.1e+2
23 1.6e+1/ 1.2e+4/ 7.3e+2 2.0e+1/ 6.3e+3/ 3.2e+2 2.5e+1/ 4.8e+3/ 2.0e+2 3.7e+1/ 2.7e+3/ 7.3e+1
24 1.6e+1/ 5.2e+5/ 3.2e+4 2.2e+1/ 2.7e+5/ 1.2e+4 2.6e+1/ 1.3e+5/ 5.2e+3 3.8e+1/ 7.0e+4/ 1.8e+3
25 1.6e+1/ 2.9e+5/ 1.8e+4 2.2e+1/ 1.3e+5/ 5.9e+3 2.6e+1/ 6.7e+4/ 2.6e+3 3.8e+1/ 3.1e+4/ 8.3e+2
26 1.6e+1/ 1.5e+5/ 9.4e+3 2.1e+1/ 7.9e+4/ 3.8e+3 2.6e+1/ 4.2e+4/ 1.6e+3 3.8e+1/ 2.4e+4/ 6.2e+2
27 1.6e+1/ 4.3e+4/ 2.6e+3 2.1e+1/ 2.6e+4/ 1.2e+3 2.6e+1/ 1.2e+4/ 4.6e+2 3.8e+1/ 6.0e+3/ 1.6e+2
28 1.6e+1/ 4.0e+4/ 2.4e+3 2.2e+1/ 2.0e+4/ 9.3e+2 2.6e+1/ 1.0e+4/ 3.9e+2 3.8e+1/ 4.9e+3/ 1.3e+2
29 1.6e+1/ 1.9e+5/ 1.2e+4 2.1e+1/ 8.8e+4/ 4.2e+3 2.6e+1/ 4.8e+4/ 1.9e+3 3.9e+1/ 2.7e+4/ 6.8e+2
30 1.6e+1/ 4.8e+5/ 2.9e+4 2.1e+1/ 2.7e+5/ 1.3e+4 2.6e+1/ 1.3e+5/ 5.2e+3 3.8e+1/ 6.1e+4/ 1.6e+3
31 1.6e+1/ 2.3e+4/ 1.4e+3 2.1e+1/ 1.2e+4/ 5.7e+2 2.6e+1/ 5.4e+3/ 2.1e+2 3.8e+1/ 3.2e+3/ 8.2e+1
32 1.6e+1/ 5.9e+4/ 3.6e+3 2.1e+1/ 3.0e+4/ 1.4e+3 2.5e+1/ 1.4e+4/ 5.7e+2 3.9e+1/ 6.9e+3/ 1.8e+2
33 1.6e+1/ 2.0e+5/ 1.3e+4 2.2e+1/ 1.0e+5/ 4.6e+3 2.6e+1/ 5.1e+4/ 2.0e+3 3.8e+1/ 2.6e+4/ 6.8e+2
34 1.6e+1/ 3.6e+4/ 2.2e+3 2.1e+1/ 2.3e+4/ 1.1e+3 2.5e+1/ 1.0e+4/ 4.1e+2 3.8e+1/ 4.7e+3/ 1.2e+2

111

Table 42.: Actual and simulated runtimes for BOHB on LCBench.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 6.8e+1/ 2.9e+4/ 4.3e+2 7.1e+1/ 1.6e+4/ 2.2e+2 7.8e+1/ 7.7e+3/ 9.8e+1 9.1e+1/ 4.2e+3/ 4.6e+1
2 6.8e+1/ 2.0e+5/ 2.9e+3 7.2e+1/ 9.2e+4/ 1.3e+3 7.8e+1/ 4.9e+4/ 6.3e+2 9.1e+1/ 2.7e+4/ 2.9e+2
3 6.8e+1/ 4.3e+4/ 6.3e+2 7.2e+1/ 2.5e+4/ 3.5e+2 7.9e+1/ 1.1e+4/ 1.4e+2 9.0e+1/ 5.4e+3/ 5.9e+1
4 6.8e+1/ 2.2e+4/ 3.2e+2 7.2e+1/ 1.0e+4/ 1.4e+2 7.9e+1/ 5.7e+3/ 7.2e+1 9.1e+1/ 3.1e+3/ 3.4e+1
5 6.8e+1/ 1.6e+4/ 2.4e+2 7.2e+1/ 7.7e+3/ 1.1e+2 7.9e+1/ 4.5e+3/ 5.7e+1 9.0e+1/ 2.5e+3/ 2.7e+1
6 6.8e+1/ 2.0e+4/ 3.0e+2 7.2e+1/ 1.0e+4/ 1.4e+2 7.9e+1/ 5.1e+3/ 6.6e+1 9.0e+1/ 2.8e+3/ 3.2e+1
7 6.9e+1/ 3.6e+4/ 5.2e+2 7.1e+1/ 1.9e+4/ 2.6e+2 7.9e+1/ 9.4e+3/ 1.2e+2 9.0e+1/ 4.9e+3/ 5.5e+1
8 6.8e+1/ 2.4e+4/ 3.5e+2 7.2e+1/ 1.0e+4/ 1.4e+2 7.9e+1/ 5.9e+3/ 7.4e+1 9.0e+1/ 2.9e+3/ 3.3e+1
9 6.8e+1/ 1.2e+4/ 1.8e+2 7.2e+1/ 6.5e+3/ 9.1e+1 7.9e+1/ 3.1e+3/ 4.0e+1 9.0e+1/ 1.7e+3/ 1.9e+1
10 6.8e+1/ 2.5e+4/ 3.6e+2 7.1e+1/ 1.2e+4/ 1.7e+2 7.9e+1/ 6.1e+3/ 7.8e+1 9.0e+1/ 3.2e+3/ 3.6e+1
11 6.9e+1/ 3.2e+4/ 4.6e+2 7.2e+1/ 1.6e+4/ 2.2e+2 7.9e+1/ 8.2e+3/ 1.0e+2 9.0e+1/ 4.0e+3/ 4.5e+1
12 6.8e+1/ 3.2e+4/ 4.7e+2 7.2e+1/ 1.8e+4/ 2.5e+2 7.9e+1/ 9.7e+3/ 1.2e+2 9.0e+1/ 4.3e+3/ 4.8e+1
13 6.9e+1/ 2.3e+4/ 3.4e+2 7.2e+1/ 1.1e+4/ 1.5e+2 7.8e+1/ 5.7e+3/ 7.3e+1 9.1e+1/ 3.1e+3/ 3.5e+1
14 6.8e+1/ 2.7e+4/ 4.0e+2 7.2e+1/ 1.3e+4/ 1.9e+2 7.8e+1/ 7.0e+3/ 9.0e+1 9.0e+1/ 3.7e+3/ 4.1e+1
15 6.8e+1/ 5.1e+4/ 7.5e+2 7.2e+1/ 2.7e+4/ 3.7e+2 7.8e+1/ 1.4e+4/ 1.8e+2 9.0e+1/ 7.3e+3/ 8.1e+1
16 6.8e+1/ 3.4e+4/ 5.0e+2 7.2e+1/ 1.6e+4/ 2.2e+2 7.8e+1/ 8.2e+3/ 1.1e+2 9.1e+1/ 4.3e+3/ 4.7e+1
17 6.8e+1/ 5.5e+4/ 8.1e+2 7.2e+1/ 2.5e+4/ 3.5e+2 7.8e+1/ 1.3e+4/ 1.7e+2 9.0e+1/ 7.0e+3/ 7.8e+1
18 6.8e+1/ 4.4e+4/ 6.5e+2 7.2e+1/ 2.4e+4/ 3.3e+2 7.8e+1/ 1.2e+4/ 1.6e+2 9.0e+1/ 6.2e+3/ 6.9e+1
19 6.9e+1/ 1.0e+5/ 1.5e+3 7.1e+1/ 4.9e+4/ 6.9e+2 7.9e+1/ 2.2e+4/ 2.8e+2 9.0e+1/ 1.2e+4/ 1.3e+2
20 6.9e+1/ 6.9e+4/ 1.0e+3 7.1e+1/ 3.2e+4/ 4.5e+2 7.9e+1/ 1.8e+4/ 2.3e+2 9.0e+1/ 8.8e+3/ 9.7e+1
21 6.8e+1/ 3.6e+4/ 5.3e+2 7.2e+1/ 1.8e+4/ 2.5e+2 7.8e+1/ 1.0e+4/ 1.3e+2 9.1e+1/ 5.1e+3/ 5.6e+1
22 6.8e+1/ 2.8e+4/ 4.1e+2 7.2e+1/ 1.4e+4/ 1.9e+2 7.8e+1/ 8.0e+3/ 1.0e+2 9.0e+1/ 4.4e+3/ 4.9e+1
23 6.8e+1/ 1.4e+4/ 2.1e+2 7.1e+1/ 7.7e+3/ 1.1e+2 7.8e+1/ 4.1e+3/ 5.3e+1 9.0e+1/ 2.5e+3/ 2.8e+1
24 6.8e+1/ 3.9e+5/ 5.7e+3 7.2e+1/ 2.0e+5/ 2.8e+3 7.9e+1/ 1.0e+5/ 1.3e+3 9.0e+1/ 5.3e+4/ 5.9e+2
25 6.8e+1/ 1.9e+5/ 2.8e+3 7.1e+1/ 1.1e+5/ 1.5e+3 7.9e+1/ 4.6e+4/ 5.9e+2 9.0e+1/ 2.0e+4/ 2.2e+2
26 6.8e+1/ 1.6e+5/ 2.3e+3 7.2e+1/ 7.2e+4/ 9.9e+2 7.8e+1/ 3.9e+4/ 4.9e+2 9.0e+1/ 2.2e+4/ 2.5e+2
27 6.8e+1/ 3.1e+4/ 4.6e+2 7.1e+1/ 1.6e+4/ 2.3e+2 7.8e+1/ 8.0e+3/ 1.0e+2 9.0e+1/ 4.3e+3/ 4.8e+1
28 6.7e+1/ 2.2e+4/ 3.3e+2 7.2e+1/ 1.1e+4/ 1.5e+2 7.9e+1/ 5.3e+3/ 6.7e+1 9.0e+1/ 2.7e+3/ 3.0e+1
29 6.8e+1/ 1.5e+5/ 2.2e+3 7.2e+1/ 8.0e+4/ 1.1e+3 7.9e+1/ 4.2e+4/ 5.3e+2 9.0e+1/ 2.0e+4/ 2.2e+2
30 6.9e+1/ 3.9e+5/ 5.7e+3 7.2e+1/ 2.0e+5/ 2.8e+3 7.8e+1/ 1.0e+5/ 1.3e+3 9.1e+1/ 5.0e+4/ 5.5e+2
31 6.8e+1/ 1.7e+4/ 2.5e+2 7.2e+1/ 8.6e+3/ 1.2e+2 7.8e+1/ 3.9e+3/ 5.0e+1 9.0e+1/ 2.3e+3/ 2.5e+1
32 6.8e+1/ 4.0e+4/ 5.9e+2 7.2e+1/ 1.6e+4/ 2.2e+2 7.9e+1/ 7.7e+3/ 9.8e+1 9.1e+1/ 4.0e+3/ 4.4e+1
33 6.8e+1/ 1.6e+5/ 2.4e+3 7.2e+1/ 8.1e+4/ 1.1e+3 7.9e+1/ 4.1e+4/ 5.2e+2 8.9e+1/ 2.1e+4/ 2.3e+2
34 6.9e+1/ 3.7e+4/ 5.3e+2 7.2e+1/ 1.7e+4/ 2.3e+2 7.8e+1/ 8.9e+3/ 1.1e+2 9.1e+1/ 4.9e+3/ 5.4e+1

112

Table 43.: Actual and simulated runtimes for HEBO on LCBench.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 5.0e+3/ 2.5e+4/ 5.1e+0 4.9e+3/ 1.5e+4/ 3.0e+0 4.8e+3/ 8.9e+3/ 1.9e+0 4.9e+3/ 7.0e+3/ 1.4e+0
2 4.3e+3/ 3.1e+5/ 7.2e+1 4.6e+3/ 1.6e+5/ 3.4e+1 4.3e+3/ 8.7e+4/ 2.0e+1 4.3e+3/ 5.3e+4/ 1.2e+1
3 4.8e+3/ 7.8e+4/ 1.6e+1 4.7e+3/ 4.0e+4/ 8.4e+0 4.7e+3/ 2.1e+4/ 4.4e+0 4.6e+3/ 1.2e+4/ 2.6e+0
4 4.9e+3/ 2.1e+4/ 4.3e+0 4.7e+3/ 1.4e+4/ 3.0e+0 5.0e+3/ 9.5e+3/ 1.9e+0 5.0e+3/ 7.7e+3/ 1.5e+0
5 4.4e+3/ 2.1e+4/ 4.7e+0 4.3e+3/ 1.2e+4/ 2.9e+0 4.4e+3/ 8.8e+3/ 2.0e+0 4.3e+3/ 6.6e+3/ 1.5e+0
6 4.8e+3/ 2.1e+4/ 4.4e+0 4.7e+3/ 1.4e+4/ 3.0e+0 4.6e+3/ 9.6e+3/ 2.1e+0 4.6e+3/ 7.1e+3/ 1.5e+0
7 3.4e+3/ 5.5e+4/ 1.6e+1 3.3e+3/ 2.8e+4/ 8.6e+0 3.4e+3/ 1.6e+4/ 4.7e+0 3.5e+3/ 8.9e+3/ 2.6e+0
8 3.4e+3/ 4.6e+4/ 1.3e+1 3.5e+3/ 2.4e+4/ 6.7e+0 3.6e+3/ 1.3e+4/ 3.8e+0 3.9e+3/ 8.0e+3/ 2.1e+0
9 3.7e+3/ 2.4e+4/ 6.6e+0 3.7e+3/ 1.4e+4/ 3.9e+0 3.7e+3/ 8.2e+3/ 2.2e+0 3.9e+3/ 5.8e+3/ 1.5e+0
10 3.9e+3/ 3.9e+4/ 9.9e+0 3.8e+3/ 2.0e+4/ 5.2e+0 3.9e+3/ 1.0e+4/ 2.6e+0 4.0e+3/ 5.8e+3/ 1.4e+0
11 4.1e+3/ 7.6e+4/ 1.8e+1 4.0e+3/ 3.9e+4/ 9.8e+0 4.1e+3/ 2.0e+4/ 5.0e+0 4.1e+3/ 1.1e+4/ 2.8e+0
12 3.7e+3/ 7.3e+4/ 2.0e+1 3.8e+3/ 3.6e+4/ 9.5e+0 4.0e+3/ 1.7e+4/ 4.4e+0 4.2e+3/ 9.4e+3/ 2.3e+0
13 4.0e+3/ 3.9e+4/ 9.8e+0 3.8e+3/ 2.0e+4/ 5.3e+0 3.8e+3/ 1.2e+4/ 3.0e+0 4.0e+3/ 7.4e+3/ 1.8e+0
14 3.9e+3/ 4.1e+4/ 1.1e+1 3.7e+3/ 2.1e+4/ 5.7e+0 3.7e+3/ 1.2e+4/ 3.1e+0 4.0e+3/ 7.0e+3/ 1.8e+0
15 4.4e+3/ 8.8e+4/ 2.0e+1 4.6e+3/ 4.6e+4/ 9.9e+0 4.4e+3/ 2.3e+4/ 5.3e+0 4.8e+3/ 1.3e+4/ 2.7e+0
16 4.3e+3/ 6.2e+4/ 1.4e+1 4.3e+3/ 3.0e+4/ 6.9e+0 4.1e+3/ 1.7e+4/ 4.2e+0 4.2e+3/ 9.8e+3/ 2.3e+0
17 4.9e+3/ 1.2e+5/ 2.4e+1 4.7e+3/ 7.0e+4/ 1.5e+1 4.6e+3/ 3.8e+4/ 8.3e+0 4.6e+3/ 1.8e+4/ 3.9e+0
18 3.7e+3/ 6.7e+4/ 1.8e+1 4.0e+3/ 3.6e+4/ 9.0e+0 3.9e+3/ 2.0e+4/ 5.0e+0 4.0e+3/ 1.1e+4/ 2.7e+0
19 4.0e+3/ 1.6e+5/ 4.1e+1 4.0e+3/ 8.6e+4/ 2.1e+1 3.9e+3/ 4.7e+4/ 1.2e+1 4.0e+3/ 2.4e+4/ 6.2e+0
20 4.1e+3/ 1.4e+5/ 3.4e+1 4.0e+3/ 6.1e+4/ 1.5e+1 4.1e+3/ 3.2e+4/ 7.8e+0 4.1e+3/ 1.7e+4/ 4.1e+0
21 4.0e+3/ 5.1e+4/ 1.3e+1 4.1e+3/ 3.1e+4/ 7.6e+0 4.0e+3/ 1.6e+4/ 4.1e+0 4.0e+3/ 8.6e+3/ 2.1e+0
22 4.7e+3/ 3.2e+4/ 6.9e+0 4.6e+3/ 2.0e+4/ 4.2e+0 4.6e+3/ 1.3e+4/ 2.7e+0 4.8e+3/ 7.4e+3/ 1.5e+0
23 4.4e+3/ 1.6e+4/ 3.6e+0 4.4e+3/ 1.0e+4/ 2.3e+0 4.4e+3/ 7.4e+3/ 1.7e+0 4.6e+3/ 5.7e+3/ 1.2e+0
24 4.2e+3/ 4.8e+5/ 1.1e+2 3.8e+3/ 2.3e+5/ 6.1e+1 4.0e+3/ 1.2e+5/ 3.0e+1 3.9e+3/ 6.1e+4/ 1.6e+1
25 4.1e+3/ 3.4e+5/ 8.1e+1 4.2e+3/ 1.5e+5/ 3.6e+1 4.1e+3/ 7.6e+4/ 1.9e+1 4.3e+3/ 3.5e+4/ 8.0e+0
26 4.9e+3/ 1.4e+5/ 2.8e+1 4.7e+3/ 7.4e+4/ 1.6e+1 4.8e+3/ 4.4e+4/ 9.1e+0 4.7e+3/ 2.3e+4/ 4.9e+0
27 4.1e+3/ 7.0e+4/ 1.7e+1 3.9e+3/ 3.5e+4/ 8.8e+0 4.0e+3/ 1.8e+4/ 4.6e+0 4.1e+3/ 1.0e+4/ 2.5e+0
28 4.0e+3/ 6.2e+4/ 1.5e+1 3.7e+3/ 3.1e+4/ 8.2e+0 3.9e+3/ 1.6e+4/ 4.2e+0 4.1e+3/ 8.7e+3/ 2.1e+0
29 4.6e+3/ 3.0e+5/ 6.5e+1 4.6e+3/ 1.4e+5/ 3.1e+1 4.7e+3/ 8.2e+4/ 1.8e+1 4.3e+3/ 5.1e+4/ 1.2e+1
30 5.0e+3/ 2.9e+5/ 5.7e+1 5.0e+3/ 1.6e+5/ 3.2e+1 5.0e+3/ 9.4e+4/ 1.9e+1 4.8e+3/ 6.4e+4/ 1.3e+1
31 4.0e+3/ 4.2e+4/ 1.1e+1 4.1e+3/ 2.2e+4/ 5.3e+0 4.1e+3/ 1.1e+4/ 2.6e+0 4.2e+3/ 7.2e+3/ 1.7e+0
32 4.1e+3/ 6.7e+4/ 1.6e+1 4.2e+3/ 3.6e+4/ 8.6e+0 3.9e+3/ 1.8e+4/ 4.5e+0 4.1e+3/ 8.4e+3/ 2.0e+0
33 3.2e+3/ 1.9e+5/ 5.9e+1 3.2e+3/ 9.8e+4/ 3.0e+1 3.4e+3/ 5.1e+4/ 1.5e+1 3.6e+3/ 2.7e+4/ 7.4e+0
34 3.9e+3/ 6.1e+4/ 1.5e+1 4.0e+3/ 3.1e+4/ 7.9e+0 4.0e+3/ 1.7e+4/ 4.3e+0 4.1e+3/ 1.0e+4/ 2.6e+0

113

Table 44.: Actual and simulated runtimes for DEHB on LCBench.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 2.4e+1/ 4.5e+4/ 1.8e+3 5.6e+1/ 2.3e+4/ 4.1e+2 5.9e+1/ 1.2e+4/ 2.0e+2 6.0e+1/ 6.0e+3/ 9.9e+1
2 2.4e+1/ 2.2e+5/ 9.2e+3 5.7e+1/ 1.1e+5/ 2.0e+3 5.8e+1/ 5.7e+4/ 9.7e+2 6.0e+1/ 3.0e+4/ 4.9e+2
3 2.5e+1/ 4.7e+4/ 1.9e+3 5.7e+1/ 2.4e+4/ 4.3e+2 5.9e+1/ 1.2e+4/ 2.0e+2 6.0e+1/ 6.0e+3/ 1.0e+2
4 2.4e+1/ 3.1e+4/ 1.3e+3 5.6e+1/ 1.5e+4/ 2.7e+2 5.9e+1/ 8.3e+3/ 1.4e+2 6.0e+1/ 4.6e+3/ 7.7e+1
5 2.4e+1/ 2.3e+4/ 9.4e+2 5.7e+1/ 1.1e+4/ 1.9e+2 5.8e+1/ 5.8e+3/ 9.9e+1 6.0e+1/ 3.1e+3/ 5.1e+1
6 2.4e+1/ 3.3e+4/ 1.4e+3 5.7e+1/ 1.6e+4/ 2.9e+2 5.8e+1/ 8.0e+3/ 1.4e+2 6.0e+1/ 4.1e+3/ 6.9e+1
7 2.4e+1/ 2.9e+4/ 1.2e+3 5.6e+1/ 1.6e+4/ 2.8e+2 5.8e+1/ 7.8e+3/ 1.3e+2 6.0e+1/ 4.1e+3/ 6.9e+1
8 2.4e+1/ 2.4e+4/ 1.0e+3 5.6e+1/ 1.2e+4/ 2.2e+2 5.8e+1/ 6.0e+3/ 1.0e+2 6.0e+1/ 3.1e+3/ 5.1e+1
9 2.5e+1/ 1.5e+4/ 6.1e+2 5.6e+1/ 7.1e+3/ 1.3e+2 5.9e+1/ 3.5e+3/ 6.0e+1 6.0e+1/ 1.9e+3/ 3.1e+1
10 2.4e+1/ 2.6e+4/ 1.1e+3 5.7e+1/ 1.4e+4/ 2.4e+2 5.9e+1/ 6.5e+3/ 1.1e+2 6.0e+1/ 3.4e+3/ 5.7e+1
11 2.5e+1/ 3.0e+4/ 1.2e+3 5.6e+1/ 1.5e+4/ 2.7e+2 5.9e+1/ 7.2e+3/ 1.2e+2 6.0e+1/ 4.0e+3/ 6.6e+1
12 2.4e+1/ 3.0e+4/ 1.2e+3 5.6e+1/ 1.5e+4/ 2.7e+2 5.8e+1/ 7.9e+3/ 1.4e+2 6.0e+1/ 3.8e+3/ 6.4e+1
13 2.4e+1/ 2.8e+4/ 1.2e+3 5.7e+1/ 1.4e+4/ 2.5e+2 5.9e+1/ 7.3e+3/ 1.2e+2 6.0e+1/ 3.6e+3/ 6.1e+1
14 2.4e+1/ 2.8e+4/ 1.2e+3 5.6e+1/ 1.4e+4/ 2.4e+2 5.9e+1/ 7.0e+3/ 1.2e+2 6.0e+1/ 3.7e+3/ 6.2e+1
15 2.4e+1/ 6.1e+4/ 2.5e+3 5.7e+1/ 3.2e+4/ 5.7e+2 5.9e+1/ 1.5e+4/ 2.6e+2 6.0e+1/ 8.4e+3/ 1.4e+2
16 2.4e+1/ 3.6e+4/ 1.5e+3 5.7e+1/ 1.8e+4/ 3.1e+2 5.8e+1/ 8.6e+3/ 1.5e+2 6.0e+1/ 4.8e+3/ 7.9e+1
17 2.4e+1/ 5.2e+4/ 2.1e+3 5.7e+1/ 2.8e+4/ 4.9e+2 5.8e+1/ 1.3e+4/ 2.3e+2 6.0e+1/ 6.6e+3/ 1.1e+2
18 2.4e+1/ 5.6e+4/ 2.3e+3 5.7e+1/ 2.7e+4/ 4.8e+2 5.9e+1/ 1.4e+4/ 2.4e+2 6.0e+1/ 6.8e+3/ 1.1e+2
19 2.4e+1/ 8.0e+4/ 3.3e+3 5.7e+1/ 4.1e+4/ 7.3e+2 5.9e+1/ 2.0e+4/ 3.5e+2 6.0e+1/ 1.0e+4/ 1.7e+2
20 2.4e+1/ 6.2e+4/ 2.5e+3 5.7e+1/ 3.1e+4/ 5.4e+2 5.9e+1/ 1.6e+4/ 2.7e+2 6.0e+1/ 8.0e+3/ 1.3e+2
21 2.4e+1/ 4.9e+4/ 2.0e+3 5.6e+1/ 2.5e+4/ 4.4e+2 5.9e+1/ 1.2e+4/ 2.0e+2 6.0e+1/ 6.5e+3/ 1.1e+2
22 2.4e+1/ 4.2e+4/ 1.7e+3 5.6e+1/ 2.1e+4/ 3.8e+2 5.9e+1/ 1.1e+4/ 1.9e+2 6.0e+1/ 6.1e+3/ 1.0e+2
23 2.4e+1/ 2.8e+4/ 1.1e+3 5.7e+1/ 1.5e+4/ 2.6e+2 5.9e+1/ 7.6e+3/ 1.3e+2 6.0e+1/ 4.1e+3/ 6.9e+1
24 2.5e+1/ 3.9e+5/ 1.6e+4 5.7e+1/ 2.0e+5/ 3.6e+3 5.9e+1/ 1.1e+5/ 1.8e+3 6.1e+1/ 5.2e+4/ 8.7e+2
25 2.4e+1/ 1.0e+5/ 4.1e+3 5.6e+1/ 5.0e+4/ 8.8e+2 5.9e+1/ 2.6e+4/ 4.5e+2 6.0e+1/ 1.4e+4/ 2.3e+2
26 2.4e+1/ 1.8e+5/ 7.3e+3 5.7e+1/ 8.7e+4/ 1.5e+3 5.9e+1/ 4.4e+4/ 7.5e+2 6.0e+1/ 2.4e+4/ 4.0e+2
27 2.4e+1/ 3.4e+4/ 1.4e+3 5.7e+1/ 1.6e+4/ 2.8e+2 5.8e+1/ 8.1e+3/ 1.4e+2 6.0e+1/ 4.2e+3/ 6.9e+1
28 2.4e+1/ 2.1e+4/ 8.8e+2 5.7e+1/ 1.1e+4/ 1.9e+2 5.9e+1/ 5.3e+3/ 9.0e+1 6.0e+1/ 2.6e+3/ 4.4e+1
29 2.4e+1/ 1.6e+5/ 6.7e+3 5.7e+1/ 8.4e+4/ 1.5e+3 5.9e+1/ 4.0e+4/ 6.9e+2 6.0e+1/ 2.4e+4/ 3.9e+2
30 2.4e+1/ 4.3e+5/ 1.8e+4 5.7e+1/ 2.1e+5/ 3.7e+3 5.9e+1/ 1.0e+5/ 1.8e+3 6.0e+1/ 6.0e+4/ 1.0e+3
31 2.4e+1/ 2.0e+4/ 8.0e+2 5.6e+1/ 9.3e+3/ 1.7e+2 5.9e+1/ 5.0e+3/ 8.5e+1 6.0e+1/ 2.4e+3/ 3.9e+1
32 2.4e+1/ 2.7e+4/ 1.1e+3 5.7e+1/ 1.3e+4/ 2.3e+2 5.9e+1/ 6.5e+3/ 1.1e+2 6.0e+1/ 3.2e+3/ 5.4e+1
33 2.4e+1/ 1.8e+5/ 7.3e+3 5.7e+1/ 9.2e+4/ 1.6e+3 5.8e+1/ 4.4e+4/ 7.6e+2 6.0e+1/ 2.4e+4/ 3.9e+2
34 2.4e+1/ 4.5e+4/ 1.8e+3 5.6e+1/ 2.2e+4/ 3.9e+2 5.9e+1/ 1.1e+4/ 1.9e+2 6.0e+1/ 5.7e+3/ 9.5e+1

114

Table 45.: Actual and simulated runtimes for NePS on LCBench.

ID P = 1 P = 2 P = 4 P = 8
Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

1 6.8e+2/ 4.0e+4/ 5.9e+1 8.0e+2/ 2.1e+4/ 2.7e+1 1.1e+3/ 1.1e+4/ 1.0e+1 1.4e+3/ 6.0e+3/ 4.2e+0
2 6.9e+2/ 1.9e+5/ 2.7e+2 7.2e+2/ 1.0e+5/ 1.4e+2 8.5e+2/ 5.2e+4/ 6.1e+1 1.0e+3/ 2.6e+4/ 2.7e+1
3 6.8e+2/ 3.1e+4/ 4.6e+1 8.4e+2/ 1.7e+4/ 2.0e+1 1.2e+3/ 8.8e+3/ 7.4e+0 1.6e+3/ 4.7e+3/ 3.0e+0
4 6.8e+2/ 2.8e+4/ 4.1e+1 8.7e+2/ 1.5e+4/ 1.8e+1 1.1e+3/ 8.0e+3/ 7.1e+0 1.6e+3/ 4.3e+3/ 2.7e+0
5 6.9e+2/ 2.4e+4/ 3.5e+1 8.5e+2/ 1.3e+4/ 1.5e+1 1.2e+3/ 6.8e+3/ 5.4e+0 1.7e+3/ 3.7e+3/ 2.2e+0
6 6.8e+2/ 2.7e+4/ 3.9e+1 8.7e+2/ 1.4e+4/ 1.6e+1 1.2e+3/ 7.4e+3/ 6.3e+0 1.7e+3/ 4.1e+3/ 2.4e+0
7 6.8e+2/ 3.0e+4/ 4.4e+1 8.2e+2/ 1.6e+4/ 2.0e+1 1.2e+3/ 8.3e+3/ 7.1e+0 1.5e+3/ 4.5e+3/ 2.9e+0
8 6.8e+2/ 1.9e+4/ 2.8e+1 9.2e+2/ 1.0e+4/ 1.1e+1 1.3e+3/ 5.4e+3/ 4.1e+0 1.8e+3/ 3.0e+3/ 1.7e+0
9 6.8e+2/ 1.7e+4/ 2.4e+1 9.1e+2/ 8.9e+3/ 9.7e+0 1.4e+3/ 4.8e+3/ 3.5e+0 1.7e+3/ 2.6e+3/ 1.5e+0
10 6.9e+2/ 2.8e+4/ 4.1e+1 8.5e+2/ 1.5e+4/ 1.7e+1 1.2e+3/ 7.7e+3/ 6.6e+0 1.6e+3/ 4.2e+3/ 2.6e+0
11 6.8e+2/ 2.0e+4/ 2.9e+1 9.0e+2/ 1.1e+4/ 1.2e+1 1.3e+3/ 5.8e+3/ 4.5e+0 1.7e+3/ 3.1e+3/ 1.8e+0
12 6.9e+2/ 2.5e+4/ 3.7e+1 8.7e+2/ 1.3e+4/ 1.5e+1 1.2e+3/ 7.0e+3/ 5.9e+0 1.6e+3/ 3.8e+3/ 2.3e+0
13 6.9e+2/ 2.1e+4/ 3.0e+1 9.2e+2/ 1.1e+4/ 1.2e+1 1.3e+3/ 5.9e+3/ 4.6e+0 1.7e+3/ 3.2e+3/ 1.9e+0
14 6.8e+2/ 2.4e+4/ 3.5e+1 8.9e+2/ 1.2e+4/ 1.4e+1 1.3e+3/ 6.6e+3/ 5.3e+0 1.7e+3/ 3.6e+3/ 2.2e+0
15 6.9e+2/ 7.7e+4/ 1.1e+2 7.6e+2/ 4.0e+4/ 5.3e+1 9.6e+2/ 2.0e+4/ 2.1e+1 1.3e+3/ 1.1e+4/ 8.1e+0
16 6.8e+2/ 2.6e+4/ 3.8e+1 8.5e+2/ 1.4e+4/ 1.6e+1 1.2e+3/ 7.3e+3/ 6.2e+0 1.7e+3/ 3.9e+3/ 2.3e+0
17 6.9e+2/ 4.2e+4/ 6.2e+1 8.1e+2/ 2.2e+4/ 2.7e+1 1.1e+3/ 1.2e+4/ 1.1e+1 1.4e+3/ 6.2e+3/ 4.3e+0
18 6.8e+2/ 4.0e+4/ 5.8e+1 8.3e+2/ 2.1e+4/ 2.5e+1 1.1e+3/ 1.1e+4/ 9.7e+0 1.4e+3/ 5.8e+3/ 4.0e+0
19 6.8e+2/ 5.2e+4/ 7.6e+1 7.7e+2/ 2.8e+4/ 3.6e+1 1.1e+3/ 1.4e+4/ 1.4e+1 1.3e+3/ 7.5e+3/ 5.6e+0
20 6.8e+2/ 5.3e+4/ 7.8e+1 8.1e+2/ 2.8e+4/ 3.5e+1 1.0e+3/ 1.5e+4/ 1.4e+1 1.3e+3/ 7.7e+3/ 6.0e+0
21 6.8e+2/ 4.1e+4/ 6.0e+1 8.1e+2/ 2.2e+4/ 2.7e+1 1.1e+3/ 1.1e+4/ 1.0e+1 1.5e+3/ 6.0e+3/ 4.1e+0
22 6.9e+2/ 4.7e+4/ 6.8e+1 7.9e+2/ 2.5e+4/ 3.1e+1 1.1e+3/ 1.3e+4/ 1.2e+1 1.4e+3/ 6.7e+3/ 4.6e+0
23 6.8e+2/ 3.4e+4/ 5.0e+1 8.2e+2/ 1.8e+4/ 2.2e+1 1.1e+3/ 9.4e+3/ 8.2e+0 1.6e+3/ 5.0e+3/ 3.2e+0
24 6.9e+2/ 3.2e+5/ 4.7e+2 7.1e+2/ 1.7e+5/ 2.4e+2 8.8e+2/ 8.8e+4/ 1.0e+2 9.2e+2/ 4.6e+4/ 5.1e+1
25 6.9e+2/ 8.1e+4/ 1.2e+2 7.4e+2/ 4.2e+4/ 5.7e+1 9.3e+2/ 2.2e+4/ 2.3e+1 1.2e+3/ 1.1e+4/ 9.6e+0
26 6.8e+2/ 1.5e+5/ 2.2e+2 7.3e+2/ 7.8e+4/ 1.1e+2 8.5e+2/ 4.0e+4/ 4.8e+1 1.0e+3/ 2.1e+4/ 2.1e+1
27 6.9e+2/ 2.7e+4/ 3.9e+1 8.5e+2/ 1.4e+4/ 1.7e+1 1.2e+3/ 7.4e+3/ 6.2e+0 1.6e+3/ 4.0e+3/ 2.4e+0
28 6.8e+2/ 2.1e+4/ 3.1e+1 8.9e+2/ 1.1e+4/ 1.3e+1 1.3e+3/ 6.0e+3/ 4.8e+0 1.7e+3/ 3.3e+3/ 1.9e+0
29 6.9e+2/ 1.6e+5/ 2.3e+2 7.3e+2/ 8.1e+4/ 1.1e+2 8.5e+2/ 4.3e+4/ 5.0e+1 1.0e+3/ 2.2e+4/ 2.2e+1
30 6.9e+2/ 3.4e+5/ 4.9e+2 7.2e+2/ 1.8e+5/ 2.5e+2 8.2e+2/ 9.2e+4/ 1.1e+2 9.0e+2/ 4.8e+4/ 5.3e+1
31 6.9e+2/ 1.5e+4/ 2.2e+1 9.4e+2/ 8.1e+3/ 8.6e+0 1.4e+3/ 4.3e+3/ 3.0e+0 1.7e+3/ 2.5e+3/ 1.4e+0
32 6.9e+2/ 2.3e+4/ 3.3e+1 8.6e+2/ 1.2e+4/ 1.4e+1 1.2e+3/ 6.4e+3/ 5.2e+0 1.7e+3/ 3.5e+3/ 2.1e+0
33 6.9e+2/ 1.4e+5/ 2.0e+2 7.5e+2/ 7.3e+4/ 9.7e+1 8.9e+2/ 3.7e+4/ 4.2e+1 1.1e+3/ 2.0e+4/ 1.8e+1
34 6.9e+2/ 3.3e+4/ 4.8e+1 8.5e+2/ 1.8e+4/ 2.1e+1 1.2e+3/ 9.1e+3/ 7.9e+0 1.6e+3/ 4.9e+3/ 3.2e+0

115

C.3. Critical Difference Diagrams for Different Budget
Size

Figures 66–87 present the critical difference diagrams for different budget size. Since
SMAC is not compatible with JAHS-Bench-201 and LCBench, we prepare for two
setups:

1. the Friedman test using all the optimizers on all the 52 benchmark problems,
and

2. the Friedman test using all the optimizers execept SMAC on 18 benchmark
problems, which simply excluded LCBench and JAHS-Bench-201 from the
benchmark problems.

We tested the hypothesis “The performance are identical on all the optimizers.”
and each red bar connects all the optimizers that show no significant performance
difference. The plots in this section relies on scikit-posthoc 1. The budget size
used in the visualizations are {Tmax

k /2i}10i=0 and Tmax
k is defined in Section 6.1. Note

that the budgets for random search and HyperBand are ten times more than the
other methods, so only random search and HyperBand can improve the performance
after b ≥ Tmax

k /23. The titles of each figure show the number of workers used in
the experiments. Furthermore, “[x.xx]” shows the average rank of each optimizer
after using the specified amount of runtime. For example, “BOHB [2.90]” means that
BOHB achieved the average rank of 2.90 among all the optimizers after running the
specified amount of budget.

1https://scikit-posthocs.readthedocs.io/en/latest/plotting_api.html.

116

https://scikit-posthocs.readthedocs.io/en/latest/plotting_api.html

3 4 5 6

BOHB [2.79]
DEHB [3.06]

NePS [3.37]
Hyperband [3.44]

 [5.81] Random
 [5.15] TPE
 [4.38] HEBO

P = 1
3 4 5 6

Hyperband [3.24]
BOHB [3.51]
DEHB [3.54]

NePS [3.73]

 [5.23] Random
 [4.62] TPE
 [4.12] HEBO

P = 2

3 4 5 6

Hyperband [3.07]
BOHB [3.46]
DEHB [3.74]
HEBO [3.83]

 [4.99] Random
 [4.89] TPE
 [4.02] NePS

P = 4
3 4 5 6

BOHB [2.98]
Hyperband [3.10]

DEHB [3.42]
NePS [4.10]

 [5.01] HEBO
 [4.92] Random
 [4.47] TPE

P = 8

Figure 66.: The critical difference diagrams for the setup without SMAC with the
budget of Tmax

k /210.

3 4 5 6

BOHB [2.70]
DEHB [2.97]

Hyperband [3.16]
NePS [3.21]

 [5.81] Random
 [5.26] TPE
 [4.88] HEBO

P = 1
3 4 5 6

Hyperband [2.85]
BOHB [3.01]

NePS [3.49]
DEHB [3.52]

 [5.49] Random
 [5.08] TPE
 [4.57] HEBO

P = 2

3 4 5 6

BOHB [2.78]
Hyperband [3.13]

NePS [3.65]
DEHB [3.80]

 [5.35] Random
 [5.05] TPE
 [4.24] HEBO

P = 4
3 4 5 6

BOHB [2.84]
Hyperband [3.33]

HEBO [4.05]
NePS [4.08]

 [4.82] Random
 [4.48] TPE
 [4.41] DEHB

P = 8

Figure 67.: The critical difference diagrams for the setup without SMAC with the
budget of Tmax

k /29.

3 4 5 6

BOHB [2.93]
NePS [2.93]

Hyperband [2.98]
DEHB [3.15]

 [5.84] Random
 [5.18] HEBO
 [4.98] TPE

P = 1
3 4 5 6

BOHB [2.81]
Hyperband [3.05]

NePS [3.21]
DEHB [3.63]

 [5.48] Random
 [5.05] HEBO
 [4.77] TPE

P = 2

3 4 5 6

BOHB [2.58]
Hyperband [2.91]

NePS [3.66]
DEHB [3.99]

 [5.26] Random
 [5.02] HEBO
 [4.58] TPE

P = 4
3 4 5 6

BOHB [2.72]
Hyperband [3.16]

NePS [3.75]
TPE [3.88]

 [5.38] DEHB
 [4.69] HEBO
 [4.40] Random

P = 8

Figure 68.: The critical difference diagrams for the setup without SMAC with the
budget of Tmax

k /28.

117

2 3 4 5 6

BOHB [2.38]
TPE [3.17]

HEBO [3.58]
NePS [3.90]

 [6.44] Random
 [4.54] DEHB
 [3.98] Hyperband

P = 1
2 3 4 5 6

BOHB [2.27]
TPE [3.14]

NePS [3.63]
Hyperband [3.94]

 [6.19] Random
 [4.72] DEHB
 [4.10] HEBO

P = 2

2 3 4 5 6

BOHB [2.35]
TPE [3.20]

Hyperband [3.36]
NePS [3.81]

 [5.85] Random
 [4.72] DEHB
 [4.72] HEBO

P = 4
2 3 4 5 6

BOHB [2.03]
Hyperband [2.88]

TPE [3.33]
NePS [3.71]

 [5.74] DEHB
 [5.22] HEBO
 [5.10] Random

P = 8

Figure 69.: The critical difference diagrams for the setup without SMAC with the
budget of Tmax

k /27.

2 3 4 5 6 7

HEBO [1.79]
BOHB [2.56]

TPE [2.68]
Hyperband [4.69]

 [6.53] Random
 [4.88] DEHB
 [4.87] NePS

P = 1
2 3 4 5 6 7

HEBO [1.89]
BOHB [2.21]

TPE [2.71]
NePS [4.61]

 [6.37] Random
 [5.39] DEHB
 [4.82] Hyperband

P = 2

2 3 4 5 6 7

HEBO [2.19]
BOHB [2.36]

TPE [2.81]
Hyperband [4.50]

 [6.25] Random
 [5.25] DEHB
 [4.64] NePS

P = 4
2 3 4 5 6 7

BOHB [2.07]
HEBO [3.22]

TPE [3.24]
Hyperband [3.56]

 [6.00] DEHB
 [5.82] Random
 [4.10] NePS

P = 8

Figure 70.: The critical difference diagrams for the setup without SMAC with the
budget of Tmax

k /26.

2 4 6

HEBO [1.76]
TPE [2.44]

BOHB [2.54]
DEHB [4.40]

 [6.72] Random
 [5.25] NePS
 [4.88] Hyperband

P = 1
2 4 6

HEBO [1.61]
BOHB [2.25]

TPE [2.58]
DEHB [4.93]

 [6.60] Random
 [5.07] NePS
 [4.97] Hyperband

P = 2

2 4 6

HEBO [1.50]
BOHB [2.30]

TPE [2.82]
DEHB [4.78]

 [6.50] Random
 [5.22] NePS
 [4.88] Hyperband

P = 4
2 4 6

HEBO [1.88]
BOHB [2.11]

TPE [2.92]
Hyperband [4.60]

 [6.51] Random
 [5.30] DEHB
 [4.68] NePS

P = 8

Figure 71.: The critical difference diagrams for the setup without SMAC with the
budget of Tmax

k /25.

118

2 4 6

HEBO [1.66]
BOHB [2.37]

TPE [2.77]
DEHB [3.84]

 [6.80] Random
 [5.40] NePS
 [5.16] Hyperband

P = 1
2 4 6

HEBO [1.39]
BOHB [2.22]

TPE [2.78]
DEHB [4.33]

 [6.66] Random
 [5.35] NePS
 [5.27] Hyperband

P = 2

2 4 6

HEBO [1.56]
BOHB [2.12]

TPE [2.91]
DEHB [4.37]

 [6.60] Random
 [5.25] NePS
 [5.19] Hyperband

P = 4
2 4 6

HEBO [1.63]
BOHB [2.08]

TPE [2.99]
DEHB [4.46]

 [6.63] Random
 [5.26] NePS
 [4.94] Hyperband

P = 8

Figure 72.: The critical difference diagrams for the setup without SMAC with the
budget of Tmax

k /24.

2 4 6

HEBO [1.40]
BOHB [2.43]

TPE [2.84]
DEHB [3.89]

 [6.33] Random
 [6.30] NePS
 [4.81] Hyperband

P = 1
2 4 6

HEBO [1.29]
BOHB [2.32]

TPE [2.88]
DEHB [4.36]

 [6.32] Random
 [6.10] NePS
 [4.75] Hyperband

P = 2

2 4 6

HEBO [1.34]
BOHB [2.24]

TPE [2.98]
DEHB [4.29]

 [6.21] Random
 [6.03] NePS
 [4.91] Hyperband

P = 4
2 4 6

HEBO [1.36]
BOHB [2.20]

TPE [3.12]
DEHB [4.40]

 [6.30] Random
 [6.05] NePS
 [4.58] Hyperband

P = 8

Figure 73.: The critical difference diagrams for the setup without SMAC with the
budget of Tmax

k /23.

2 4 6

HEBO [1.28]
BOHB [2.60]

TPE [2.98]
Hyperband [4.30]

 [6.87] NePS
 [5.62] Random
 [4.36] DEHB

P = 1
2 4 6

HEBO [1.28]
BOHB [2.43]

TPE [3.02]
Hyperband [4.46]

 [6.59] NePS
 [5.68] Random
 [4.54] DEHB

P = 2

2 4 6

HEBO [1.35]
BOHB [2.42]

TPE [2.99]
Hyperband [4.40]

 [6.66] NePS
 [5.52] Random
 [4.65] DEHB

P = 4
2 4 6

HEBO [1.28]
BOHB [2.46]

TPE [3.24]
Hyperband [4.08]

 [6.62] NePS
 [5.52] Random
 [4.80] DEHB

P = 8

Figure 74.: The critical difference diagrams for the setup without SMAC with the
budget of Tmax

k /22.

119

2 4 6

HEBO [1.27]
BOHB [2.81]

TPE [3.09]
Hyperband [3.88]

 [6.92] NePS
 [5.14] Random
 [4.89] DEHB

P = 1
2 4 6

HEBO [1.33]
BOHB [2.70]

TPE [3.18]
Hyperband [3.71]

 [6.74] NePS
 [5.18] Random
 [5.15] DEHB

P = 2

2 4 6

HEBO [1.30]
BOHB [2.53]

TPE [3.29]
Hyperband [3.87]

 [6.69] NePS
 [5.19] Random
 [5.13] DEHB

P = 4
2 4 6

HEBO [1.27]
BOHB [2.54]

TPE [3.45]
Hyperband [3.63]

 [6.75] NePS
 [5.28] DEHB
 [5.08] Random

P = 8

Figure 75.: The critical difference diagrams for the setup without SMAC with the
budget of Tmax

k /2.

2 4 6

HEBO [1.27]
BOHB [2.85]

TPE [3.14]
Hyperband [3.73]

 [6.94] NePS
 [5.16] DEHB
 [4.90] Random

P = 1
2 4 6

HEBO [1.31]
BOHB [2.74]

TPE [3.29]
Hyperband [3.64]

 [6.75] NePS
 [5.40] DEHB
 [4.87] Random

P = 2

2 4 6

HEBO [1.31]
BOHB [2.62]

TPE [3.48]
Hyperband [3.66]

 [6.73] NePS
 [5.60] DEHB
 [4.61] Random

P = 4
2 4 6

HEBO [1.27]
BOHB [2.61]

Hyperband [3.47]
TPE [3.67]

 [6.75] NePS
 [5.70] DEHB
 [4.53] Random

P = 8

Figure 76.: The critical difference diagrams for the setup without SMAC with the
budget of Tmax

k .

3 4 5 6

DEHB [2.97]
BOHB [3.63]
HEBO [3.77]

NePS [4.50]

 [6.10] Random
 [5.43] SMAC
 [4.83] TPE
 [4.77] Hyperband

P = 1
3 4 5 6

HEBO [3.40]
DEHB [4.03]

Hyperband [4.13]
BOHB [4.13]

 [5.60] Random
 [5.43] SMAC
 [5.03] TPE
 [4.23] NePS

P = 2

3 4 5 6

HEBO [3.57]
Hyperband [3.73]

BOHB [4.23]
DEHB [4.33]

 [5.27] Random
 [5.17] NePS
 [4.87] SMAC
 [4.83] TPE

P = 4
3 4 5 6

BOHB [3.63]
DEHB [3.90]

Hyperband [4.23]
Random [4.30]

 [5.43] HEBO
 [5.10] NePS
 [5.03] SMAC
 [4.37] TPE

P = 8

Figure 77.: The critical difference diagrams for the setup with SMAC with the
budget of Tmax

k /210.

120

3 4 5 6

DEHB [2.80]
BOHB [3.67]
HEBO [4.10]

Hyperband [4.40]

 [6.37] Random
 [5.63] SMAC
 [4.57] NePS
 [4.47] TPE

P = 1
3 4 5 6

BOHB [3.33]
HEBO [3.67]

Hyperband [3.90]
DEHB [4.03]

 [6.17] SMAC
 [5.87] Random
 [4.60] TPE
 [4.43] NePS

P = 2

3 4 5 6

HEBO [3.67]
BOHB [3.80]

Hyperband [4.17]
SMAC [4.63]

 [5.37] Random
 [4.87] DEHB
 [4.83] NePS
 [4.67] TPE

P = 4
3 4 5 6

BOHB [3.60]
HEBO [3.80]

Hyperband [4.03]
TPE [4.03]

 [5.90] SMAC
 [5.23] NePS
 [4.87] DEHB
 [4.53] Random

P = 8

Figure 78.: The critical difference diagrams for the setup with SMAC with the
budget of Tmax

k /29.

2 3 4 5 6 7

DEHB [2.27]
BOHB [3.73]

TPE [3.97]
NePS [4.17]

 [7.00] Random
 [5.50] SMAC
 [4.77] Hyperband
 [4.60] HEBO

P = 1
2 3 4 5 6 7

DEHB [3.43]
BOHB [3.50]

Hyperband [4.03]
HEBO [4.40]

 [6.20] Random
 [5.07] SMAC
 [4.77] TPE
 [4.60] NePS

P = 2

2 3 4 5 6 7

BOHB [3.43]
TPE [4.03]

Hyperband [4.13]
HEBO [4.23]

 [6.00] Random
 [5.00] NePS
 [4.90] SMAC
 [4.27] DEHB

P = 4
2 3 4 5 6 7

BOHB [3.60]
HEBO [3.90]

TPE [4.03]
Hyperband [4.27]

 [5.90] SMAC
 [5.17] DEHB
 [4.70] Random
 [4.43] NePS

P = 8

Figure 79.: The critical difference diagrams for the setup with SMAC with the
budget of Tmax

k /28.

2 3 4 5 6 7

DEHB [3.10]
HEBO [3.37]
BOHB [3.63]

TPE [3.70]

 [6.90] Random
 [5.57] Hyperband
 [5.17] NePS
 [4.57] SMAC

P = 1
2 3 4 5 6 7

BOHB [3.00]
HEBO [3.50]

TPE [4.03]
NePS [4.37]

 [6.73] Random
 [4.97] Hyperband
 [4.93] SMAC
 [4.47] DEHB

P = 2

2 3 4 5 6 7

BOHB [3.57]
HEBO [3.73]
SMAC [4.10]

Hyperband [4.33]

 [6.43] Random
 [4.77] NePS
 [4.73] DEHB
 [4.33] TPE

P = 4
2 3 4 5 6 7

BOHB [2.33]
Hyperband [3.67]

TPE [4.30]
HEBO [4.43]

 [5.90] SMAC
 [5.47] Random
 [5.27] DEHB
 [4.63] NePS

P = 8

Figure 80.: The critical difference diagrams for the setup with SMAC with the
budget of Tmax

k /27.

121

2 3 4 5 6 7

TPE [2.90]
HEBO [3.07]
DEHB [3.37]
BOHB [3.77]

 [7.00] Random
 [6.17] NePS
 [5.50] Hyperband
 [4.23] SMAC

P = 1
2 3 4 5 6 7

HEBO [2.53]
BOHB [2.77]

TPE [3.17]
SMAC [3.90]

 [6.83] Random
 [5.73] Hyperband
 [5.53] NePS
 [5.53] DEHB

P = 2

2 3 4 5 6 7

HEBO [2.87]
BOHB [3.03]

TPE [3.37]
SMAC [3.77]

 [6.80] Random
 [5.87] NePS
 [5.27] Hyperband
 [5.03] DEHB

P = 4
2 3 4 5 6 7

BOHB [2.33]
HEBO [2.70]

Hyperband [4.03]
TPE [4.20]

 [6.53] Random
 [5.83] DEHB
 [5.30] NePS
 [5.07] SMAC

P = 8

Figure 81.: The critical difference diagrams for the setup with SMAC with the
budget of Tmax

k /26.

2 4 6

TPE [2.63]
BOHB [3.27]
HEBO [3.40]
DEHB [3.67]

 [7.30] Random
 [6.23] NePS
 [5.47] Hyperband
 [4.03] SMAC

P = 1
2 4 6

BOHB [2.50]
HEBO [2.50]

TPE [2.90]
SMAC [4.13]

 [6.80] Random
 [6.07] NePS
 [5.70] Hyperband
 [5.40] DEHB

P = 2

2 4 6

HEBO [2.47]
BOHB [2.53]
SMAC [3.50]

TPE [3.60]

 [7.17] Random
 [5.83] NePS
 [5.77] Hyperband
 [5.13] DEHB

P = 4
2 4 6

BOHB [2.07]
HEBO [2.37]

TPE [3.77]
SMAC [4.20]

 [7.13] Random
 [5.73] NePS
 [5.67] DEHB
 [5.07] Hyperband

P = 8

Figure 82.: The critical difference diagrams for the setup with SMAC with the
budget of Tmax

k /25.

2 4 6

BOHB [2.90]
TPE [3.20]

DEHB [3.47]
HEBO [3.60]

 [7.27] Random
 [6.30] NePS
 [5.53] Hyperband
 [3.73] SMAC

P = 1
2 4 6

BOHB [2.23]
HEBO [2.67]

TPE [3.03]
SMAC [3.63]

 [7.00] Random
 [6.37] NePS
 [5.57] DEHB
 [5.50] Hyperband

P = 2

2 4 6

BOHB [2.07]
HEBO [3.13]
SMAC [3.33]

TPE [3.80]

 [7.03] Random
 [5.70] Hyperband
 [5.47] NePS
 [5.47] DEHB

P = 4
2 4 6

HEBO [2.20]
BOHB [2.23]

TPE [3.90]
SMAC [4.17]

 [6.87] Random
 [5.80] DEHB
 [5.77] NePS
 [5.07] Hyperband

P = 8

Figure 83.: The critical difference diagrams for the setup with SMAC with the
budget of Tmax

k /24.

122

2 4 6

HEBO [2.53]
BOHB [3.00]

TPE [3.53]
SMAC [4.03]

 [7.10] NePS
 [6.53] Random
 [5.10] Hyperband
 [4.17] DEHB

P = 1
2 4 6

HEBO [2.20]
BOHB [2.67]

TPE [3.50]
SMAC [3.53]

 [7.03] NePS
 [6.37] Random
 [5.93] DEHB
 [4.77] Hyperband

P = 2

2 4 6

HEBO [2.37]
BOHB [2.40]
SMAC [3.37]

TPE [3.80]

 [6.27] NePS
 [6.27] Random
 [6.10] DEHB
 [5.43] Hyperband

P = 4
2 4 6

HEBO [2.27]
BOHB [2.30]

TPE [3.97]
Hyperband [4.33]

 [6.50] NePS
 [6.27] Random
 [5.93] DEHB
 [4.43] SMAC

P = 8

Figure 84.: The critical difference diagrams for the setup with SMAC with the
budget of Tmax

k /23.

2 4 6 8

HEBO [2.07]
BOHB [3.33]

TPE [4.10]
Hyperband [4.30]

 [7.60] NePS
 [5.43] Random
 [4.63] DEHB
 [4.53] SMAC

P = 1
2 4 6 8

HEBO [2.07]
BOHB [2.93]

TPE [3.80]
SMAC [4.17]

 [7.27] NePS
 [5.97] DEHB
 [5.60] Random
 [4.20] Hyperband

P = 2

2 4 6 8

HEBO [2.37]
BOHB [2.70]

TPE [3.97]
SMAC [4.20]

 [6.87] NePS
 [6.30] DEHB
 [5.33] Random
 [4.27] Hyperband

P = 4
2 4 6 8

HEBO [2.07]
BOHB [2.93]

Hyperband [3.63]
TPE [4.17]

 [6.97] NePS
 [6.37] DEHB
 [5.23] Random
 [4.63] SMAC

P = 8

Figure 85.: The critical difference diagrams for the setup with SMAC with the
budget of Tmax

k /22.

2 4 6 8

HEBO [2.00]
BOHB [3.67]

Hyperband [3.80]
TPE [4.33]

 [7.67] NePS
 [4.97] DEHB
 [4.93] Random
 [4.63] SMAC

P = 1
2 4 6 8

HEBO [2.23]
BOHB [3.47]

Hyperband [3.50]
TPE [4.10]

 [7.33] NePS
 [6.30] DEHB
 [4.73] Random
 [4.33] SMAC

P = 2

2 4 6 8

HEBO [2.20]
BOHB [2.93]

Hyperband [3.83]
SMAC [4.33]

 [6.90] NePS
 [6.63] DEHB
 [4.70] Random
 [4.47] TPE

P = 4
2 4 6 8

HEBO [2.03]
BOHB [3.13]

Hyperband [3.17]
TPE [4.47]

 [7.13] NePS
 [6.57] DEHB
 [4.83] Random
 [4.67] SMAC

P = 8

Figure 86.: The critical difference diagrams for the setup with SMAC with the
budget of Tmax

k /2.

123

2 4 6 8

HEBO [2.00]
Hyperband [3.63]

BOHB [3.67]
TPE [4.33]

 [7.73] NePS
 [5.17] DEHB
 [4.83] Random
 [4.63] SMAC

P = 1
2 4 6 8

HEBO [2.17]
Hyperband [3.27]

BOHB [3.47]
TPE [4.33]

 [7.37] NePS
 [6.43] DEHB
 [4.63] Random
 [4.33] SMAC

P = 2

2 4 6 8

HEBO [2.23]
BOHB [3.10]

Hyperband [3.47]
Random [4.27]

 [7.03] NePS
 [6.77] DEHB
 [4.67] TPE
 [4.47] SMAC

P = 4
2 4 6 8

HEBO [2.03]
Hyperband [3.00]

BOHB [3.23]
Random [4.13]

 [7.13] NePS
 [6.90] DEHB
 [4.80] SMAC
 [4.77] TPE

P = 8

Figure 87.: The critical difference diagrams for the setup with SMAC with the
budget of Tmax

k .

124

	1 Introduction
	2 Background
	2.1 Preliminaries and Notations
	2.2 Parallel Optimization
	2.2.1 Asynchronous Optimization with Cheap Optimizer
	2.2.2 Asynchronous Optimization with Expensive Optimizer
	2.2.3 Multi-Fidelity Optimization (MFO)

	2.3 Optimization Using Zero-Cost Benchmark
	2.3.1 Non-Parallel Setup
	2.3.2 Synchronous Setup
	2.3.3 Asynchronous Setup

	2.4 Parallel Processing in Hyperparameter Optimization Libraries
	2.4.1 User Perspective of Hyperparameter Optimization Libraries
	2.4.2 Creating Workers in User Side
	2.4.3 Creating Workers in Application Side

	3 Related Work
	3.1 Hyperparameter Optimization Benchmarks and Simulation
	3.2 Multi-Fidelity Optimization Methods

	4 Asynchronous Optimization Wrapper for Zero-Cost Benchmarks
	4.1 Algorithm for Cheap Optimizer
	4.2 Algorithm for Expensive Optimizer
	4.3 Limitations of Multi-Core Simulation
	4.4 Algorithm for Ask-and-Tell Interface

	5 Empirical Algorithm Validation on Test Cases
	5.1 Visual Verification on Small Handcrafted Test Cases
	5.2 Quantitative Verification on Random Test Cases
	5.3 Performance Verification on Actual Runtime Reduction

	6 Real-World Experiments Using Zero-Cost Benchmarks
	6.1 Experiment Setup
	6.2 Results

	7 Conclusions
	Bibliography
	A Benchmark Problems
	A.1 Branin Function
	A.2 Hartmann Function
	A.3 Tabular & Surrogate Benchmarks

	B Tool Usage
	B.1 Wrapper Object (ObjectiveFuncWrapper) Arguments
	B.2 Wrapper Interface

	C Additional Results
	C.1 Performance over Time for Each Task
	C.2 Actual & Simulated Runtimes for Each Setup
	C.3 Critical Difference Diagrams for Different Budget Size

