
Machine Learning / Shuhei Watanabe 1/26

Machine Learning

Shuhei Watanabe

March 31, 2021

1 Introduction

The ultimate goal of machine learning (ML) is to automate the whole process of the learning pipeline,
i.e. end-to-end learning1. The end-to-end learning is composed of the following:

1. Preprocessing: standardization, padding of missing values, removing outliers, checking imbal-
anced target

2. Feature extraction and encoding: feature engineering, i.e. to make new features from given
data such as BMI from height and weight, and encoding such as one-hot encoding

3. Feature selection: picking some useful variables and remove others. Feature selection is effec-
tive when the dimension of the input feature is high or there are some unimportant variables or
variables that highly correlate with other variables.

4. Evaluation and model selection: To select suitable algorithms, tune hyperparameter and
generalize the model not only for past data but also future instances.

5. Postprocessing: To ensure fairness and remove the dicriminational prediction (e.g. class im-
balance, sensitivity to specific variables)

In this notebook, we focus especially on the generalization of machine learning pipelines. We use the
following notations throughout the notebook.

Definition 1

• Weight vector w ∈ RK : the internal parameters learned through algorithms

• Feature vector X ∈ RN×D: the given input data

• Labels Y ∈ RN : the corresponding answer of the given input data

• Objective function f : RD → R: The function to learn. In this example, it takes an
input and returns the corresponding prediction

• Loss function L : R × R → R: The function, which measures the loss of the current
model state

2 Probabilistic Interpretation

In this section, we introduce probabilistic interpretation of regression models.

1Current deep learning algorithms are often called end-to-end learning.

Machine Learning / Shuhei Watanabe 2/26

2.1 Generative Model

The regression models assume the existence of f(x) and predict the function by the form of f(x;w).
Probabilistic models assume that such functions f(x) follows normal distribution at each given point.

Assumption 1
At given point x, the function follows the normal distribution, i.e.

f(x) ∼ N (f(x;w), σ2)

2.2 Maximum Likelihood Estimation

We infer a parametric model p(y|x,w) of a given task 2 and assume that data follow this model. Under
this condition, the likelihood is defined as follows:

L(w|D) =
N∏
i=1

p(yi|xi,w) (1)

where D is a given training dataset. As seen in Eq. (1), the likelihood is defined as the product
of the probabilities that each data can occur with the given parametric model. By maximizing the
likelihood, we obtain a set of parameters w for a model. Conventionally, parametric models p(yi|xi,w)
belongs to the exponential family. For this reason, we take the logarithm of likelihood log L(w|D) =∑N

i=1 log P (yi|xi,w) when we optimize the likelihood. The derivative of the log likelihood is the
following:

∂log L(w|D)
∂w

=

N∑
i=1

∂Q(xi, yi,w)

∂w

where log p(xi, yi,w) = log eQ(xi,yi,w) = Q(xi, yi,w). We can achieve the maximization of log
likelihood when the derivative is zero.

3 Simple non-parametric Methods

Roughly speaking, non-parametric models refer to models that do not have a fixed number of param-
eters and are able to change the degree of freedom based on observations3. There might be another
definition, but we use the definition in this notebook.

3.1 K-nearest neighbors method

This method checks the K-nearest neighbors and pick the label which occurs the most in its neighbors.
The advantage of this method is the simplicity. On the other hand, since this method decides the
class label based on neighbors, if covariate-shift happens between training and test datasets, it
usually exhibits poor performance. Furthermore, the parameter selection of K can seriously affect
the performance. Another disadvantage of KNN is the time complexity O(DN) for each test case
where N is the number of training samples and D is the dimension of each sample. Data imbalance
also deteriorates the performance.

2The näıve examples are binomial distribution, e.g. the probability that you will get a head of a coin by a coin toss
and normal distribution where we have to infer the mean vector and covariance matrix.

3In other words, parameteric models have a fixed number of parameters.

Machine Learning / Shuhei Watanabe 3/26

Algorithm 1 K-nearest neighbors method

Dtrain = {(x1, y1), · · · , (xN , yN)}
p,K ▷ the parameter of p-norm and the number of neighbors

1: function KNN(Dtrain,xtest,K)
2: data = []
3: for i = 1, . . . , N do
4: d = distance(p,xi,xtest) ▷ Define the p-norm
5: data.append([d, yi])

6: data.sort(axis=0) ▷ Sort the data with respect to distance from xtest

7: return the most frequent class in data[:K]

3.2 Näıve Bayes

Assumption 2
Suppose all the input variables x1, x2, ..., xD are conditionally independent i.e. p(xi|xj) = p(xi)
for all i, j.

Under this assumption, Näıve Bayes can calculate the arbitrary conditional probability as follows:

p(y = C|x1, x2, ..., xD) =
p(y = C)

p(x1, x2, ..., xD)

D∏
d=1

p(xd|y = C)

where C is the choice of class and p(x1, x2, ..., xD) =
∑K

C=1 p(y = C)
∏D

d=1 p(xd|y = C). The benefits
of Näıve Bayes are the following:

• Simple and easy to code

• Computationally cheap and feasible even when the data size is large

• Not affected seriously by trivial features (∵ Assumption 2)

On the other hand, the Assumption 2 does not hold for most real-world problems and this is the major
barrier to this method.

4 Linear models

4.1 Linear Discriminant Analysis (LDA)

LDA is a linear classification method and this algorithm assumes the following:

Assumption 3
Given data D = {(x1, y1), · · · , (xN , yN)} where xi ∈ RD, yi ∈ {1, 2, · · · ,K},

1. ∀i, p(x|y = i) ∼ N (mi,Σi)

2. The covariance matrix of each distribution is identical, i.e., ∀i, j,Σi = Σ

where mi =
∑

j|yj∈Ci
xj/ni , Σi =

∑
j|yj∈Ci

(xj −mi)(xj −mi)
⊤/(ni − 1) , ni is the number of

samples which belong to the i-th class Ci. Using these notations, we define the following:

Machine Learning / Shuhei Watanabe 4/26

Definition 2
Total within-class covariance matrix

ΣW =

K∑
i=1

Σi

Between-class covariance matrix (the weighted sum of the case of the i-th class and the others)

ΣB =

K∑
i=1

ni(mi −m−i)(mi −m−i)
⊤

where m−i is the mean vector of all the classes except the i-th class.

When considering the decision boundary of two gaussian distributions with an identical covariance
matrix, the line clearly passes the centeral point between m1 and m2. However, the slope is unknown;
therefore, we discuss the derivation of the slope. When mapping samples to a hyperplane 4 that is
perpendicular to the decision boundary, the overlap of the mapped distributions should be minimized
as shown in Figure 1. The singed distance from the decision boundary f(x) = w⊤x + b is computed
as f(x)/∥w∥ 5. Therefore, we minimize the variance of distance from the decision boundary. When
mapping the mean vector m and the covariance matrix Σ to a hyperplane, they will be transformed
as follows:

mmap
i =

1

ni

∑
j|yj∈Ci

f(xj)

∥w∥
=

1

ni

∑
j|yj∈Ci

w⊤xj + b

∥w∥
=

w⊤mi + b

∥w∥

Σmap
i =

1

ni − 1

∑
j|yj∈Ci

(f(xj)/∥w∥ −mmap
i)(f(xj)/∥w∥ −mmap

i)⊤

=
1

(ni − 1)∥w∥2
∑

j|yj∈Ci

(w⊤xj −w⊤mi)(w
⊤xj −w⊤mi)

⊤

=
1

∥w∥2
w⊤Σiw

The maximization for binary classification tasks is performed using the following Fisher’s criterion:

Definition 3
Fisher’s criterion measures the separation between two distribution via the ratio of between-class
variance and within-class variance, i.e.,

C =
σ2
B

σ2
W

The maximization of this equation leads to larger separation.

Those two are computed as σ2
B = N(mmap

i −mmap
j)(mmap

i −mmap
j)⊤, σ2

W =
∑K

i=1 Σ
map
i . Therefore,

the criterion between class i and j is the following:

C =
N(w ·mi −w ·mj)

2

w⊤Σiw +w⊤Σjw
∝ ∥w∥

2(mi −mj)
2

w⊤(Σi +Σj)w

4Since the decision boundary is always D − 1 dimension, this hyperplane is also D − 1 dimension.
5The mapping of x to w (w is perpendicular to the decision boundary, e.g. w · (b/w1, ,−b/w2, 0, · · · , 0) = 0) is

w⊤x/∥w∥ and the distance between the origin and the decision boundary is ∥b∥/∥w∥.

Machine Learning / Shuhei Watanabe 5/26

Figure 1: The overlap of the mapped distributions should be minimized when we map samples to a
hyperplane that is perpendicular to the decision boundary. Source: https://eigenfoo.xyz/lda/

By diffrentiating the equation with respect to w and taking this derivative as zero, we obtain the
following equation:

(w⊤ΣBw)ΣWw = (w⊤ΣWw)ΣBw

Since both w⊤ΣBw and w⊤ΣWw are the scalar factor, we can drop them and obtain the following
equation:

ΣWw ∝ ΣBw

w ∝ Σ−1
W ΣBw ∝ Σ−1

W (mi −mj)

w = Σ−1
W (mi −mj)

where (mi−mj)
⊤w is also a scalar factor. The bias term b is calculated from the fact that the decision

boundary must pass the center point of two mean vectors. Therefore, b is computed as:

f

(
mi +mj

2

)
= 0⇐⇒ b = −w⊤(mi +mj)

2

The biggest advantage of LDA is the access to the closed-form solution. Additionally, it can be
used for multiple-class separation as follows:

1. One-against-rest
It requires K discriminators. There can be large regions where the class is ambiguous.

2. One-against-one
It requires K(K−1)/2 discriminators. This algorithm can also have class-undefined regions, but
smaller than that in one-against-rest.

3. Inherent multi-class formulation
It requires K discriminators. First, we prepare fi(x) = wix + bi for all i. A given point x
belongs to Ci if and only if it satisfies fi(x) > fj(x) for all j. This algorithm does not create any
ambiguous regions.

On the other hand, the major issues are that the assumption of Gaussian distribution for each class
does not hold for most real-world problems and it cannot separate non-linearity. Note that when we
use non-linear mapping of the features, we can separate non-linearities as well. Furthermore, the total
complexity is O(ND2 +D3) 6, so it is computationally expensive for high dimensional problems.

6The computation of the variance and the inverse matrix are dominant.

Machine Learning / Shuhei Watanabe 6/26

4.2 Logistic Regression

Logistic regression is a supervised learning for binary classification tasks. This method returns the
pseudo probability that a given input vector belongs to class C1. This probabilistical post-processing

is computed as σ(x;w) = 1/(1 + e−x⊤w) where x is an augmented vector again and is known as
logistic calibration. This allows us to yield [0, 1] bounded probability-like real numbers. Plus,
isotonic calibration is also known as a post-processing method. This method takes the percentil of
samples and map to a given distribution according to the percentile information. From the Bayesian
perspective, it is formulated as follows:

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
p(x|C1)p(C1)

p(x|C1)p(C1)(1 + e−a)

=
1

1 + e−a
= σ(a)

where we set a = w⊤x = log p(x|C1)p(C1)
p(x|C2)p(C2)

and it is called log-odds. The optimization for the logistic

regression is equivalent to the approximation of the optimal log-odds. The major drawback of this
method is that it does not have the analytical solution. This is because this method uses non-
linear transformation to obtain the probability. However, the loss function is differentiable, so it is
possible to optimize the weight vector w using gradient descent.

4.2.1 Gradient descent

The minimization of a function f(x) is performed using the following gradients:

∂f(x)

∂xi

where xi is the i-th element of a vector x. Since gradients tell us which directions to increase the
function value, the update of the gradient descent is performed as follows:

xi ← xi − α
∂f(x)

∂xi

where α is the learning rate. Note that when a given function is continually differentiable and
convex 7, the convergence to the global optima is guaranteed. The cross entropy function satisfies
those two properties.

4.2.2 The gradient of cross entropy in Logistic Regression

The cross entropy loss function is L(w) = −
∑N

i=1

(
yi log σ(xi;w) + (1 − yi) log(1 − σ(xi;w))

)
and

the derivative of sigmoid function is ∂σ(x;w)/∂w = xiσ(x;w)(1− σ(x;w)). Therefore, the gradient
of the cross entropy is the following:

∂L(w)

∂wi
= −

N∑
j=1

(xj,i(yj − σ(xj ;w))

where each term can be derived as follows:

∂

∂wi
(1− yj)(1− σ(xj ;w)) =

−xj,i(1− yj)

1− σ(xj ;w)
σ(xj ;w)(1− σ(xj ;w)) = −xj,i(1− yj)σ(xj ;w)

∂

∂wi
yj log σ(xj ;w) =

xj,iyj
σ(xj ;w)

σ(xj ;w)(1− σ(xj ;w)) = xj,iyj(1− σ(xj ;w))

7f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) for λ ∈ [0, 1]. Hessian is quite famous related to convex.

Machine Learning / Shuhei Watanabe 7/26

Using the result, the update of the gradient descent is performed by:

wi ← wi − α

N∑
j=1

(xj,i(σ(xj ;w)− yj))

The weight update is O(ND) and a query is O(D). Note that since the termination criterion is not
given, the total time complexity is unknown.

4.3 Linear Regression

Linear Regression is a supervised learning to model f : RD → R. and described as f(x;w) =

w0 +
∑D

d=1 wdxd or f(x;w) = x⊤w 8. The assumptions of linear regression model are the following:

Assumption 4
Linear Regression performs well if a given dataset satisfies the following assumptions:

1. The expected value of the residual errors is zero: E(ϵi) = 0

2. The residual errors are independent and each variance is identical: V(ϵi) = σ2

3. The residual errors follow a normal distribution: ϵi ∼ N (0, σ2))

In other words, ϵ1, · · · , ϵN is i.i.d (Independent and identically distributed random variables) and
The heteroscedasctic data (σ2 is not constant over all the data) and outliers potentially deteriorate
the accuracy of the model. If a dataset include outliers, L1 loss might be better since L1 loss puts
less penalty on outliers.

4.3.1 The derivation of the analytical form of Linear Regression

In general, the loss function of linear regression is the square least error function as follows:

L(w) =

N∑
i=1

∥yi − f(xi;w)∥2

By minimizing this function, we obtain the optimal w⋆. First, we transform Eq. (4.3.1) as follows:

L(w) =

N∑
i=1

∥yi − x⊤
i w∥2

L(w) = ∥y −Xw∥2 = (y −Xw)⊤(y −Xw)

Table 1: The comparison of LDA and Logistic Regression

- Logistic Regression LDA

Estimation gradient descent maximum log likelihood (closed form)
Likelihood the output requires extra processing
Data Distribution no assumption desirably gaussian and same covariance
Outliers not so sensitive sensitive
Variables continuous, categorical only continuous

8This x ∈ RD+1 is an augumented vector and includes 1 at the head of the vector.

Machine Learning / Shuhei Watanabe 8/26

where X ∈ RN×(D+1) is the given feature vectors and y ∈ RN is the corresponding value vector for
each feature vectors. Next, we will take the derivative with respect to the weight vector.

∂L(w)

∂w
=

∂

∂w

(
y⊤y − (Xw)⊤y − y⊤Xw + (Xw)⊤(Xw)

)
=

∂

∂w

(
−2y⊤Xw +w⊤(X⊤X)w

)(
∵ a⊤ · b = b⊤ · a

)
The optimal w⋆ is obtained when the derivative is equal to 0. Therefore, the following equation is
derived using ∂(w⊤Aw)/∂w = w⊤(A+A⊤):

∂

∂w

(
−2y⊤Xw +w⊤(X⊤X)w

)
= 0

−2y⊤X +w⊤(X⊤X + (X⊤X)⊤) = 0

w = (X⊤X)−1X⊤y

where the determinant of (X⊤X)−1 must be non-zero. If it is zero, we use gradient descent
and the convergence is guaranteed due to the convexity of the objective. This condition of non-zero
determinant are met if and only if D + 1 ≤ N and Rank(X) = D + 1 9. The total complexity of the
parameter inference is O(ND2 +D3), the multiplication and the computation of the inverse of X⊤X
and the approximation for a new point is O(D). Since the weight vector w is the partial derivative of
f , the absolute value of wi represents the importance of the dimension xi. Note that we can use
analytic form w = (X⊤X +λI)−1X⊤y in the case of L2 loss, but there is no closed form for L1 loss.

5 Overfitting and underfitting

The goal of ML models is to find out features behind given data and generalize such features. How-
ever, ML models often capture data-specific features or noise on training data and this leads to less
generalization, i.e. overfitting. On the other hand, the scarcity of data or the lack of the flexibility
of learning models leads to poor performance, i.e. underfitting. Therefore, we have to pay much
attention not only to the training accuracy, but also the discrepancy between the training and the test
performance, i.e. generalization gap.

5.1 Bias-variance trade-off

Bias is a gap between the distribution of predictions and ground truth and variance is the deviation
of prediction on different data distribution. Those two are in the trade-off relationship and we need to
balance them. For example, when the bias of models is large, the models do not predict the objective
function well on given data. On the other hand, when the bias of models is small, the models predict
well. For variance, if the variance is small, prediction is similar to each other regardless of given data
distribution. On the other hand, if the variance is large, ML models overfit specific features or noise
in given data. For this reason, the models predict well on given training data, but potentially not on
test data. Those terms are appeared in the cost function. The expected test error is represented
as follows:

E(X,Y)∼D,D∼Pn [(f̂(X;D)− Y)2] =

∫
x

∫
y

∫
D
(f̂(x;D)− y)2p(x, y)p(D)dxdydD (2)

where D is a dataset sampled from data distribution Pn and |D| = n. For the simplicity, we write

the left hand side as EX,Y ,D[(f̂(X;D)− Y)2]. By transforming Eq. (2), we will obtain the following

9If N < D + 1, the rank of X⊤X is less than D + 1.

Machine Learning / Shuhei Watanabe 9/26

Table 2: Bias-variance trade-off

- bias variance

High underfitting overfitting
Low well-fitting generalization

equation:

EX,Y ,D[(f̂(X;D)− Y)2] = EX,Y ,D[(f̂(X;D)− f̄(X) + f̄(X)− Y)2]

= EX,Y ,D[(f̂(X;D)− f̄(X))2 + (f̄(X)− Y)2

+ 2(f̂(X;D)− f̄(X))(f̄(X)− Y)]

= EX,D[(f̂(X;D)− f̄(X))2] + EX,Y [(f̄(X)− Y)2]

EX,Y ,D[2(f̂(X;D)− f̄(X))(f̄(X)− Y)]

where f̄(x) = ED[f̂(x;D)]. The last line EX,Y ,D[2(f̂(X;D)− f̄(X))(f̄(X)−Y)] can be canceled out
by transforming as follows:

2EX,Y ,D[(f̂(X;D)− f̄(X))(f̄(X)− Y)] = 2EX,Y [ED[(f̂(X;D)− f̄(X))(f̄(X)− Y)]]

= 2EX,Y [(f̄(X)− Y)ED[(f̂(X;D)− f̄(X))]]

= 2EX,Y [(f̄(X)− Y)(f̄(X)− f̄(X))]

= 0

Furthermore, we transform EX,Y [(f̄(X)− Y)2] and yield the following:

EX,Y [(f̄(X)− Y)2] = EX,Y [(f̄(X)− Ȳ (X) + Ȳ (X)− Y)2]

= EX [(f̄(X)− Ȳ (X))2] + EX,Y [(Ȳ (X)− Y)2]

+ 2EX,Y [(f̄(X)− Ȳ (X))(Ȳ (X)− Y)]

where ȳ(x) =
∫
y p(y|x)dy. The last line EX,Y [(f̄(X)− Ȳ (X))(Ȳ (X)− Y)] can be canceled out by

transforming as follows:

EX,Y [(f̄(X)− Ȳ (X))(Ȳ (X)− Y)] = EX [(f̄(X)− Ȳ (X))EY |X [Ȳ (X)− Y]] = 0

The last transformation uses the definition of ȳ. Therefore, as a whole, we obtain the following
equation:

EX,Y ,D[(f̂(X;D)− Y)2] = EX,D[(f̂(X;D)− f̄(X))2]︸ ︷︷ ︸
Variance

+ EX [(f̄(X)− Ȳ (X))2]︸ ︷︷ ︸
(Bias)2

+ EX,Y [(Ȳ (X)− Y)2]︸ ︷︷ ︸
Noise

The properties of each state are listed in Table 2. Note that it is effective to add informative features
especially for tabular data or increase the model capacity to deal with underfitting. The informative
features can be created via feature engineering or domain knowledge. However, it is less effective when
we have huge dataset or use end-to-end learning models.

Machine Learning / Shuhei Watanabe 10/26

5.2 Regularization

To balance the bias-variance trade-off, we often introduce so-called a regularization term to the loss
function to prevent models from overfitting as follows:

L(y, ŷ) = 1

N

N∑
i=1

(yi − ŷi)
2 + λΩ(w)

where Ω(w) is called a regularization term and λ is the coefficient to control the size of each weight
value. Note that we do not include bias terms in the regularization. When the weight values grow,
this is punished by the regularization term. The following two are often used as a regularization term:

1. L1 regularization ∥w∥: promotes sparsity and most trivial weight values go to zero

2. L2 regularization ∥w∥2: alleviates colinearity, because it treats each feature evenly

Since the absolute weight values can be considered as the magnitude of contribution of the correspond-
ing feature, it implies the regularization suppresses the contribution from each feature. In the case of
L2 regularization, the regularization puts penalty on the features that contribute much. Therefore,
these features cannot have too much influence on the model.

5.3 Miscellaneous regularization techniques

There are many methods that handle the overfitting and underfitting such as residual blocks, batch
normalization, dropout, NAS, weight decay, data augmentation, early stopping and model averaging.
Since we already discuss most methods in the deep learning course, we do not discuss them extensively
and rather focus on shake-shake and data augmentation.

• shake-shake: a method to take linear interpolation of two parallel residual blocks. The co-
efficient for the interpolation is different for both forward and backward pass, so it prevents
overfitting.

• Data augmentation: a technique that increases the data amount by modifying input data.
Visual examples are shown in Figure 2. Mixup is to take the linear intepolation of two images
and the corresponding labels. Cutout is to drop randomly selected k × k pixels for image and
k columns for tabular data. Cut mix is to replace randomly selected k × k pixels with another
image.

Note that since mixup and cutmix take non-deterministic labels, it genelizes more. Additionally, there
is a technique called trainable data augmentation. This method learns RNN that suggests the data
augmentation methods minimizing the validation loss and the RNN is updated using reinforcement
learning on the validation loss. The optimization of the selection of such regularization methods is
called Combined Algorithm Selection and Hyperparameter (CASH) optimization problem.

5.4 VC-dimension

In supervised learning, the choice of function class for decision boundaries or regression model is
strongly related to the performance. Basically, the function with high capacity are likely to overfit
the training dataset, so the following VC-dimension has been proposed to estimate the capacity of
a function class:

Definition 4
VC-dimension is defined as the largest number D, such that there exists a set of D data points
which the function class can shatter.

Machine Learning / Shuhei Watanabe 11/26

Figure 2: From the left side, the original, mixup, cutout, and cutmix image.

Roughly speaking, if there are more than D+1 data points, we can create problems which cannot
be solved by a given function. For example, if there are four points in a 2D plane, linear functions
sometimes cannot separate four points perfectly, e.g. XOR by logistic regression. However, linear
functions can separate up to three points in a 2D plane with arbitrary configurations. Therefore, the
VC-dimension for linear functions in a 2D space is D = 3. Additionally, the upper bound of the
potential test error is represented using the VC-dimension as follows:

R[f]︸︷︷︸
Test Error

≤ R̂[f]︸︷︷︸
Training Error

+

√
D(log 2N

D + 1)− log δ
4

N︸ ︷︷ ︸
Variance

where D ≪ N and N is the number of data points in the training data. Roughly speaking, larger
D leads to larger variance and lower bias. Therefore, we should avoid high capacity functions if we
can achieve the same training error with lower capacity functions. Note that VC-dimension is often
discussed in probably approximately correct (PAC) framework that considers conditions where
a model f achieves the error rate smaller than ϵ with the probability greater than 1− δ.

6 Support Vector Machine (SVM)

In this section, we discuss SVM. First, we introduce a hard-margin SVM which assumes given data
points can be perfectly separable and then we expand the discussion to a soft-margin SVM that allows
some violations of the separability. Finally, we explain the kernel method to draw non-linear decision
boundaries. SVM is preferred over the preceding methods, because of no strong assumption about
data distribution and less damage from high dimensional inputs. Additionally, soft-margin
allows more robust classification and support vectors can help to understand the problem better 10.
Downsides of kernel SVM is the expensive kernel computation for larger datasets, less interpretability
compared to the linear version, and poor performance on imbalanced data in general11.

10As another usage, one-class SVM is known. It constructs the possible smallest hypersphere and if a given data point
is outside of the hypersphere, this point is an outlier.

11We can handle imbalanced data either by putting more penalty on a rare class or increasing the margin size for a
rare class inversely proportional to class size.

Machine Learning / Shuhei Watanabe 12/26

6.1 Margin maximization

The basic formulation of SVM is to classify a given dataset D = {(xi, yi)}Ni=1 where x ∈ RD and
y ∈ {−1, 1} by maximizing the margin between two classes as follows:

argmaxw,bmin{∥x− xi∥ | yi(w⊤xi + b) ≥ 1 for all i = 1, · · · , N} (3)

Since the signed distance between xi and w⊤x = 0 is computed as w⊤xi

∥w∥ and the minimum margin

satisfies w⊤x(1) + b = 1 and w⊤x(−1) + b = −1 for each class as we can normalize arbitrarily. The

margin between the decision boundary and class 1 or −1 are minw⊤xi

∥w∥ = 1−b
∥w∥ and maxw⊤xi

∥w∥ = −1−b
∥w∥

12, respectively. Therefore, Eq. (3) can be rewritten in the following form:

maxw,b

(
1− b

∥w∥
− −1− b

∥w∥

)
= maxw

2

∥w∥
= minw

∥w∥2

2

In summary, SVM solves the following optimization problem:

minw
∥w∥2

2
subject to yi(w

⊤xi + b) ≥ 1 for all i = 1, · · · , N

The constraints are called inequality constraints.

6.2 Dual representation

The optimization of the objective under given constraints can be solved using the Lagrange multi-
plier as follows:

L(w, b,α) =
∥w∥2

2
−

N∑
i=1

αi (yi(w
⊤xi + b)− 1)︸ ︷︷ ︸

margin maximization

where ∀i, αi ≥ 0 and αi is called dual variables13. The KKT conditions 14 for this equation are the
following:

(1). Stationarity :
∂L

∂w
= w −

N∑
i=1

αiyixi = 0,
∂L

∂b
=

N∑
i=1

αiyi = 0

(2). Primal feasibility : yi(w
⊤xi + b)− 1 ≥ 0

(3). Dual feasibility : αi ≥ 0

(4). Complementary slackness : αi(yi(w
⊤xi + b)− 1) = 0

Note that the inequality of condition (2) holds for all the data points except the points on the
boundaries and the condition (4) implies that if αi is non-zero, xi is one of the closest points. From
this equation, the optimal weight vector is w⋆ =

∑
i=1 αiyixi. By replacing w with the optimal w⋆,

the dual optimization problem can be yielded as follows:

Ld(α) =
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
⊤
i xj −

N∑
i=1

αi

(
yi

(N∑
j=1

αjyjx
⊤
j xi + b

)
−1
)

= −1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
⊤
i xj +

N∑
i=1

αi − b

N∑
i=1

αiyi︸ ︷︷ ︸
=0

=

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
⊤
i xj

12Notice that this distance takes a negative value.
13w, b are called primal variables.
14If the objective takes the optimal value, the KKT conditions must be fulfilled.

Machine Learning / Shuhei Watanabe 13/26

The relationship between the solutions for the primal and the dual problems is called weak duality
shown below:

Theorem 1
The optimal value of Ld is, by definition, the best lower bound on Lp that can be obtained from
the Lagrange dual function. In particular, sup(Ld) ≤ inf(Lp) holds even if the original problem
is not convex.

In general, the Lagrange primal function is Lp(w, b) = supα≥0L(w, b,α) and the Lagrange dual

function is Ld(α) = infw,bL(w, b,α). The minimization of Lp is called primal problem and the
maximization of Ld is called dual problem. It is interesting to note that dual problem is always
convex. When the strong duality holds, the solutions for the primal problem and the dual problem
are identical and the solution gives us the optimal objective 15 under given constraints. By definition,
Ld(α) ≤ L(w, b,α) ≤ Lp(w, b) can be easily derived. Therefore, the dual optimization problem 16 of
SVM is the following:

argmaxα

(
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
⊤
i xj

)

subject to αi ≥ 0 for all i = 1, · · · , N and

N∑
i=1

αiyi = 0

Note that this problem can be solved using numerical quadratic programming and the convergence to
the global optima is guaranteed. Since SVM requires users to store training data points, it is called
an instance-based learning and the data points that have non-zero αi are called support
vectors 17. As most αi goes to zero, we have to store only a fraction of training data points,
i.e. SVM is sparse. Once the optimization problem is solved, the predicted label of a given data can
be computed as follows:

sign(f(x)) =

N∑
i=1

αiyix
⊤xi + b

Suppose the set of support vectors is S, then b is trivially computed from the definition of the support
vectors as follows:

1 = yi

(N∑
j=1

αjyjx
⊤
i xj + b

)
(for all i s.t. xi ∈ S)

b =
1

|S|
∑
xi∈S

(
yi −

∑
xj∈S

αjyjx
⊤
i xj

)
Note that we take the average over all the support vectors for the numerical statbility.

6.3 Soft-margin SVM

Soft-margin SVM does not require linear separability of the given dataset. The formulation of soft-
margin SVM is as follows:

minw
∥w∥2

2
+ C

N∑
i=1

ξi

subject to yi(w
⊤xi + b) ≥ 1− ξi, ξi ≥ 0 for all i = 1, · · · , N

15I will stress that the goal is to not minimize the Lagrange, but minimize the objective function. This can be achieved
by optimizing the primal or the dual function.

16In SVM, the strong duality holds.
17Models such as neural networks are called model-based learning.

Machine Learning / Shuhei Watanabe 14/26

where ξi ≥ 0 alleviates the margin between data points and the decision boundary. ξi = 0 is same
as the normal SVM. 0 < ξi ≤ 1 is the state where data points can be classified properly, but it is
inside the margin. ξi > 1 will be misclassified. In other words, we have to store the data points
that satisfies yi(w

⊤xi + b) ≤ 1 as support vectors. Basically, we would like to take smaller ξi and

this is reflected in the formulation (the minimization of C
∑N

i=1 ξi). Note that since the constraints
yif(xi) ≥ 1 − ξi must be satisfied, we can also use the hinge loss max(0, 1 − yif(xi)) instead of ξi.
In the same way as in the hard-margin SVM, the dual problem of soft-margin SVM is formulated as:

argmaxα

(
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
⊤
i xj

)

subject to 0 ≤ αi ≤ C for all i = 1, · · · , N and

N∑
i=1

αiyi = 0

Both primal and dual problems of soft-margin SVMs are convex optimizatin and the global solution
is guaranteed. We often use SGD for the primal problem and coordinate search for the dual problem.

Additionally, there is a reformulation of soft-margin SVM called ν-SVM. ν upper-bounds the per-
centage of training data points which can violate the hard-margin, i.e. ξi > 1. This formulation does
not make any difference in terms of the optimization result. However, users can treat the hyperparam-
eter ν more intuitively. Note that ν = 0 and C =∞ correspond to hard-margin SVM and ν = 1 and
C = 0 correspond to highly soft-margin SVM. Since soft-margin generalizes more, it is recommended
to use soft-margin even when we can apply hard-margin SVM.

6.4 Kernel and Kernel Trick

The dot product is one of the similarity measures and the generalized concept of the dot product
is kernel function that measures a similarity between two given points. The definition of kernel
function is as follows:

Definition 5
kernel function k : X ×X → R is a similarity measure of given points x,x′. This function must
satisfy the following properties:

1. Symmetric: k(x,x′) = k(x′,x)

2. Semi-positive definite: ∀N ∈ N≥1,∀a ∈ RN ,
∑N

i=1

∑N
j=1, aiajk(xi,xj) ≥ 0

This kernel function is the transformation of the following equation:

k(x,x′) =

K∑
i=1

ϕi(x)ϕi(x
′)

where ϕ : X → R is a mapping and K is the number of mappings in the dot product space. Since this
is also an inner product, it can also measure the similarity. Additionally, we can introduce non-linear
mapping in the dot product space and that is why the kernel function has more flexible representation
and higher capacity. However, it is usually hard for users to define suitable mapping for each
problem and it takes O(KD) for the computation of the inner product. For this reason, the
similarity measure using kernel function so-called kernel trick has been invented and kernel trick
allows us to avoid those two problems. Typical kernel functions are the following:

1. Polynomial kernel (d): k(x,x′) = (x⊤x′)d

Machine Learning / Shuhei Watanabe 15/26

2. Gaussian Radial Basis function (RBF) kernel 18 (σ): k(x,x′) = exp
(
−∥x−x′∥2

2σ2

)
3. Sigmoid kernel (a, b): k(x,x′) = tanh(a(x⊤x′) + b)

where the parameters after the kernel name show the hyperparameter of each kernel. Note that every
linear algorithm, which can be expressed by dot product operations, can be reformulated using kernel
functions.

6.5 Multiclass SVMs

Multiclass classifications are performed by either one-vs-rest or one-vs-one approach. As in LDA,
one-vs-rest takes K SVMs where K is the number of classes. The major issues of one-vs-rest are
overlapping regions and class imbalance. Although classifiers’ score fk(x) is often biased especially
with independent K learnings, overlapping regions can be solved by taking y = argmaxkfk(x). One-

vs-one takes K(K−1)
2 SVMs. This method also has two issues. (1) there will be class-undefined regions

and (2) we need more classifiers. The first issue is addressed by taking the summation of score over
each class and choosing the best class. The second issue is not serious because each classifier has
fewer support vectors, i.e. each SVM is more sparse. As seen in the both cases, the independent
training might cause biased choices in class-undefined regions. Therefore, there is a generalized version
of SVMs, i.e. joint optimization of all the classifiers:

minw
∥w∥2

2
+ C

N∑
i=1

(
maxy ̸=yi

max(0, 1− fyi
(x) + fy(x))

)
subject to ∀y ̸= yi, fyi(x)− fy(x) ≥ 1

where fk(x) = w⊤
k x+ bk. This formulation promotes the larger margin between true and false classes

and puts a penalty on the most confusing class. Note that problems due to imbalanced data is mitigated
by scaling the margin on both side by the inverse of the number of training samples in all
the solutions.

7 Decision tree

Decision tree is a method that divides the space by several rules. Since the decision tree divides
each data point using some splitting rules, the result has nice interpretability and it can draw
flexible boundaries. On the other hand, if we allow deep splitting, it easily overfits. Further benefits
of this algorithm is that the computational complexity of the whole splitting is O(ND logN) and
it is scalable with respect to the training dataset size N . Other advantages are the handling of
categorical parameters and no influence from unimportant dimensions 19 and the flexible
framework, i.e. we can choose splitting criterion or the computation in each partition freely. Since
this algorithm is deterministic, the decision tree is not suitable for a näıve ensemble. We will see
how to ensemble this method in Random Forest later.

18It is often used since this function is defined in the dot product space with the infinite number of mapping.
19Because it handles each dimension separately.

Machine Learning / Shuhei Watanabe 16/26

7.1 Computation of the prediction

Given a dataset D = {(xi, yi)}Ni=1 where x ⊂ X ∈ RD, y ∈ R, the decision tree T : RD → R is the
model which has partitions Pi ∈ X satisfying the following properties:

Definition 6
Suppose the model has p partitions, the set of partitions has to satisfy the following two prop-
erties:

1. ∀i, j(1 ≤ i < j ≤ p, i, j ∈ N),Pi ∩ Pj = ∅

2.
∪p

i=1 Pi = X

Roughly speaking, each partition does not have any overlaps with the others and the union of all
the partitions covers the whole feature space. In each query, an input vector will be assigned to one of
the partitions. Then, the output will be computed in the partition or just return the value assigned to
the partition. In most cases, the output will be the mean value of a partition for regression and
the most frequent class in a partition for classification tasks. However, we can substitute these
operation with f(DPi

) where DPi
is the set of (xj , yj) belonging to the partition Pi. For example,

when we know that there is class imbalance, we can put more weights on a minority class.
The partitions will be determined using the indicator called impurity H(D). This is variance for

regression and gini or cross entropy for classification tasks. Decision tree iteratively splits a set of
data points D into two partitions D(L),D(R) 20 which maximize so-called gain G(D(L),D(R)|D) 21.
Then the gain G(D(L),D(R)|D) is computed as follows:

G(D(L),D(R)|D) = NH(D)− (N (L)H(D(L)) +N (R)H(D(R))) (4)

where N = |D|, N (L) = |D(L)|, N (R) = |D(R)|. As mentioned previously, H(D) is

H(D) = 1

N

N∑
i=1

(yi − ȳ)2

ȳ =
1

N

N∑
i=1

yi

H(D) = −
K∑
c=1

pclog2pc

for regression and K-class classification tasks respectively where pc is the occurrence of class c out of
the number of data points in the leaf. The Gini index defined below is also used in classification tasks:

H(D) = 1−
K∑
c=1

p2c

In decision tree, we split the given data to maximize the gain in Eq. (4). In the case of cross entropy
H(D), another interpretation of the optimization of the information gain are the KL divergence as
follows:

DKL(P∥Q) =

∫
P (y|Pi)log

P (y|Pi)

Q(y)
dy

Q(y) =
1

K
(for all c = 1, 2, · · · ,K)

20In most cases, we divide a set in two, but we can also divide a set in K, but such K divisions can be achieved by a
sequence of binary splits. Additionally, binary splits are faster and often yield better performance.

21if the H(D) is cross entropy, it is called information gain

Machine Learning / Shuhei Watanabe 17/26

Algorithm 2 CART

Dcur(data), dcur(current depth), vcur(current assinged value) ▷ Input
1: Max depth dmax, min data points per leaf δ ▷ Hyperparameters
2: function Data Split(Dcur, dcur, vcur)
3: if |Dcur| > δ ∩ dcur ≤ dmax then
4: (d, v) = Search Best Split(Dcur) ▷ The complexity is O(ND)
5: Compute the assigned value for left vL and right vR
6: D(L) = {(x, y) ∈ Dcur|xd ≤ v}
7: DataSplit(D(L), dcur + 1, vL)
8: D(R) = {(x, y) ∈ Dcur|xd > v}
9: DataSplit(D(R), dcur + 1, vR)

10: else
11: Assign vcur to the current partition

The uniform distribution Q(y) is the worst case, so the formulation of impurity can be interpreted as
the maximization of the KL-divergence. This is equivalent to the minimization of the impurity
or variance. The spliting procedure is performed in a recursive manner and each boundary divides
the d-th dimension in xd < v and xd ≥ v. Before implementing the algorithm, we convert categorical
parameters into some integers. In the recursion, the data split function will be called N times at most
and searching for the best splitting takes O(ND). This is because there are N candidates {xi}Ni=1,
i.e. N − 1 possible splits, in each dimension. In fact, when we sort each dimension, each split can be
computed by O(1) except the first split in each dimension, which takes O(N). Therefore, the total
complexity is O(ND logN) 22. Thus, the time complexity of the whole algorithm requires O(N2D)
and the prediction takes O(N) in the worst case 23. On the other hand, the worst case rarely happens
and the whole split takes O(ND logN) and the prediction takes O(logN) in the best case 24. Note
that decision tree can draw non-linear boundaries as well, but we do not discuss it here.

7.2 Important hyperparameters of decision tree

1. min leaf: It controls the minimum number of data points for each partition. Since the larger
number prevents partitions from being occupied by only one data point, it is not likely to have
specific rules to classify exceptional data points. Therefore, the larger number leads to general-
ization.

2. max depth: Deeper trees have higher representational capacity and higher variance while shal-
lower trees can generalize, but have higher bias.

3. number of nodes: The maximum number of nodes by the depth x is 2x. However, it does not
happen in most cases, so we can just specify the maximum number of nodes using this variable.

4. leaf model: f(DPi) can control the flexibility of the model

5. split criterion: It also changes the model

8 Ensembles

8.1 Bagging

Bagging is to ensemble models trained on bootstrapped data.

22If the splitting boundary is multi dimension or non-linear, we cannot compute each split in O(1).
23The case where each partition has only one data point.
24The case where each splitting divides given data perfectly in half.

Machine Learning / Shuhei Watanabe 18/26

8.1.1 General settings

Expected test error is decomposed as (Variance) + (Bias)2 + (Noise) and the variance is computed as:

Ex,D[f̂(x;D)− f̄(x)2]

where f̄(x) =
∫
f̂(x;D)p(D)dD. Therefore, when we take the expected value of f̂(x,D) for various

training dataset D sampled from i.i.d, the variance can be reduced. More formally, we take subsets
D(k) = {(x

i
(k)
j

, y
i
(k)
j

)}nj=1 of the whole training data D = {(xi, yi)}Ni=1 where ∀k(1 ≤ k ≤ K), i(k) is

a multiset with the length of n sampled from {1, 2, · · · , N} with replacement 25. Then the empirical

formulation of f̂ is the following:

f̂(x;D) = 1

K

K∑
k=1

f̂ (k)(x;D(k)) (5)

This ensemble technique is called bagging. Since the bootstrapped data share some data points with
some other data, ∀k,D(k) are not i.i.d and Eq. (5) does not correspond to f̄ . It is important to reduce

the overlaps between each data D(k) and uncorrelate each model f̂ (k). Suppose we would like to
solve a regression task and each model yields the expected squared error of v = Ex[ϵ

2
i] and any pairs

of two models yield the covariance of errors of c = Ex[ϵiϵj]. Then, the overall variance is the following:

E
[(

1

K

K∑
k=1

ϵk

)2]
=

1

K2
E
[K∑
k=1

ϵ2k +
∑
j ̸=i

ϵiϵj

]

=
K

K2
v +

K(K − 1)

K2
c

=
1

K
v +

K − 1

K
c︸ ︷︷ ︸

Correlation term

When there is strong correlation, c goes to v and the overall variance goes to v. On the other hand,
when the correlation is smaller, the second term goes to zero and the overall variance goes to v/K.

8.1.2 Random Forests

Bagging requires low-biased and uncorrelated models. Low bias can be achieved by decision tree.
Therefore, bagged trees has been invented. However, since each tree correlates, random forests
introduce the random spliting shown in Algorithm 3 to decrease the correlation between each tree.
The random forests can evaluate the uncertainty of an ensemble as follows:

σ2(x) =
1

K

K∑
k=1

(
f̂ (k)(x;D(k))− f̂(x;D)

)2
When each model yields similar outputs, the overall confidence becomes higher and the variance
approaches zero. Additionally, the test error of the model can be computed using the following out-
of-bag training error:

1

N

N∑
i=1

L
(
yi,

1

|Bout
i |

∑
k∈Bout

i

f̂ (k)(xi)

)
where Bout

i is the set of all integers k s.t. (xi, yi) /∈ D(k).

25While there are only O(NCn) possible sets for the sample without replacement, there are O(Nn) possible sets for
the sample with replacement. For this reason, the sample with replacement will contribute to the variance reduction
more.

Machine Learning / Shuhei Watanabe 19/26

Algorithm 3 Random Forests

1: function Random Forests
2: for k = 1, . . . ,K do
3: D(k) ∼ D ▷ Bootstrapping
4: Select d dimensions from D dimensions
5: Obtain f̂ (k) by performing CART on the selected d dimensions

6: return 1
K

∑K
k=1 f̂

(k)

Algorithm 4 Gradient boosting

∀i ∈ {1, · · · , N}, F (0)(xi) = 0 ▷ objective function
1: function Gradient Boosting
2: for k = 0, 1, · · · ,K − 1 do

3: ∀i ∈ {1, · · · , N}, g(k)i =
(∂L(yi,F)

∂F

)
F=F

(k)
i

4: Train the (k + 1)-th model f̂ (k+1) := argminf
∑N

i=1(f(xi) + g
(k)
i)2

5: Update F (k+1) = F (k) + f̂ (k+1) ▷ αk+1 = 1 in most algorithms

6: return F (K)

8.2 Boosting

Another ensemble method is boosting and this method adds new models iteratively to reduce the
loss. The main goal of boosting is to obtain a strong learner by aggregating weak learners. The
aggregation is performed in a sequential manner. The final ensemble is the weighted sum of each
model F (K)(x) = f̂(x) =

∑K
k=1 α

(k)f̂ (k)(x). In other words, we add the (k + 1)-th model f̂ (k+1) to
the fixed cummulated model F (k)(x) and train only the (k + 1)-th model. Note that the selection of
αk is typically uniform over each base model and it is a learnable parameter in the case of AdaBoost.

8.2.1 Gradient boosting

Using the Taylor approximation, each term can be reformulated as follows:

L(yi, F (k)
i + f̂

(k+1)
i) ≃ L(yi, F (k)

i) +

(
∂L
∂F

)
F=F

(k)
i

f̂
(k+1)
i

N∑
i=1

L(yi, F (k)
i + f̂

(k+1)
i) ≃

N∑
i=1

L(yi, F (k)
i) +

N∑
i=1

g
(k)
i f̂

(k+1)
i

where g
(k)
i =

(∂L(yi,F)
∂F

)
F=F

(k)
i

, F
(k)
i = F (k)(xi) and f̂

(k+1)
i = f̂ (k+1)(xi). Since the following holds:

f(x+∆x) ≃ f(x) +
df

dx
∆x

f(x+∆x) ≃ f(x)− α

(
df

dx

)2

≤ f(x)

where we take ∆x = −α df
dx . The optimization problem is transformed as follows:

f̂ (k+1) = argminf

N∑
i=1

(f(xi) + αg
(k)
i)2

In general, we take α = 1 for the optimization.

Machine Learning / Shuhei Watanabe 20/26

8.2.2 AdaBoost

AdaBoost is a binary classification method using boosting. Both labels and predictions are either 1 or
−1. Predictions are made by the following weighted majority vote:

Prediction model : F (k)(x) = sign

(k∑
i=1

α(i)f̂ (i)(x)

)
Reliability of the k-th learner : α(k) = log

(
1− ϵk
ϵk

)
Weighted error rate : ϵk =

1

N

N∑
i=1

w
(k)
i 1(yi ̸= f̂ (k)(xi))∑N

j=1 w
(k)
j

where w
(k)
i is the weight

w
(k)
i =

{
w

(k−1)
i eα

(k)

(if yi ̸= f̂ (k)(xi))

w
(k−1)
i (otherwise)

Note that the priority w
(k)
i goes up significantly when the k-th model is more accurate and the model

predicts the i-th instance correctly. In other words, the more the i-th instance is difficult, the larger the
priority of correct answers to the i-th instance becomes. The optimization of each model is formulated
as follows:

f (k) = argminf ϵk

≃ argminf

N∑
i=1

w
(k)
i L(yi, f(xi))

≃ argminf

N∑
i=1

w
(k)
i e−yif(xi)

︸ ︷︷ ︸
surrogate loss

AdaBoost iteratively complements the ensemble model by adding an additional model solving more
difficult instances. In the end, AdaBoost returns the following:

F (K)(x) = sign

(K∑
k=1

α(k)f̂ (k)(x)

)
Note that models that have larger α(k) can solve harder instances.

8.3 Gradient boosting decision trees (GBDT) / XGBoost

GBDT combines gradient boosting and decision trees and XGBoost is one of the GBDT that uses up
to the second derivatives. Let p be the number of partitions one tree has and t(k)(xi) be the index of
the partition in the k-th weak tree that xi belongs to, i.e. xi ∈ Pt(k)(xi). Addtionally, fi be the output
value of the i-th partition. Then the objective function is the following:

argminf

(N∑
i=1

L(yi, F (k)
i + f(xi)) + Ω(f)

)

where F (k)(xj) =

k∑
i=1

f̂
(i)

t(i)(xj)
,

Ω(f) = γp+
λ

2

p∑
i=1

∥fi∥2,

Machine Learning / Shuhei Watanabe 21/26

γ, λ are the hyperparameters to control the regularization effect. The first term of the regularization
term helps to reduce the number of partitions for less important variables and the second term prevents
the model from fitting outliers and moderates influences from one leaf. Using the second-order Taylor
approximation with respect to F , we obtain the following:

L(k+1)
i = L(yi, F (k)

i + f(xi)) = L(k)
i +

(
∂L(k)

i

∂F

)
F=F

(k)
i︸ ︷︷ ︸

=g
(k)
i

fi +

(
∂2L(k)

i

∂F 2

)
F=F

(k)
i︸ ︷︷ ︸

=h
(k)
i

f2
i

2

= L(k)
i + g

(k)
i fi + h

(k)
i

f2
i

2

where g, h are the gradient and Hessian, respectively. Since L(k)
i is constant with respect to F and

the optimization with respect to F is equivalent to that with respect to ∀i, fi, the objective is the
following:

argminf1,...,fp

(N∑
i=1

(
g
(k)
i fi + h

(k)
i

f2
i

2

)
+γp+

λ

2

p∑
i=1

∥fi∥2
)

argminf1,...,fp

p∑
i=1

((∑
j∈Pi

g
(k)
j

)
fi +

(∑
j∈Pi

h
(k)
j + λ

)
f2
i

2
+ γ

)

When we define Gi =
∑

j∈Pi
g
(k)
j and Hi =

∑
j∈Pi

(h
(k)
j + λ), the optimal value for each partition is

the following:

argminf1,...,fp

p∑
i=1

(
Gifi +Hi

f2
i

2
+ γ︸ ︷︷ ︸

fi=−Gi
Hi

(∵∂/∂fi=0)

)

Therefore, the objective of the i-th partition is computed as O(x ∈ Pi) = − G2
i

2Hi
+ γ and when spliting

the i-th partition in two, the gain is the following:

G(D(L),D(R) | D) = O(x ∈ Pi)−
(
O(x ∈ Pi(L)) +O(x ∈ Pi(R))

)
=

1

2

(
−G2

i

Hi
+

G2
i(L)

Hi(L)

+
G2

i(R)

Hi(R)

)
−γ

The objective is to maximize the gain and G(D(L),D(R) | D) ≤ 0 is the termination criterion. Note
that the factor N in decision tree is the coefficient to match the scale and we do not need such scale
factors in this formulation because the scale already matches. Since the gradient and Hessian can be
pre-computed, the searching for the optimal split is performed by O(ND logN) including sorting and
the total time complexity of the training is O(KND logN) for K trees ensemble in the case of balanced
trees. The prediction is computed by O(K logN) on average. GBDT or XGBoost naturally handles
categorical parameters and it is widely used for tabular data tasks as this method is low-biased and
has relatively low variance.

9 Hyperparameter optimization (HPO)

9.1 General settings

The hyperparameter configurations of ML significantly affects the performance of the models. For this
reason, the HPO is essential. In the typical settings, we first train a model with a hyperparameter
configuration θ and evaluate the performance via the result on the validation dataset. We repeat such

Machine Learning / Shuhei Watanabe 22/26

procedure and take the configuration that has the best performance on the validation dataset in the
end. In other words, we would like to solve the following:

θ⋆ ∈ argminθL(θ,Dtrain,Dvalid) = argminθf(θ)

where we assume supervised learning in this case and f(θ) is the objective function. Since the searching
space determines the possible global solutions, it is important to pay attention to which hyperparam-
eters to tune and in what ranges we optimize. Meta-learning can guide these settings. When we
would like to generalize the performance more, we often take the average of the loss from k-fold cross
validation. Cross validation first splits the dataset into k parts. Then, we train the model on k − 1
parts and validate on the rest. Since there are k possible selections of the validation dataset, we yield
the k validation losses. In the cross validation, we take the average of all the losses and report the
average as the performance. Note that the case of k = 1 is called hold-out validation and the case
where k is equal to the number of data points is called leave-one-out cross validation. Leave-one-out
cross validation is used when there are not sufficient training data points. Note that one advantage of
cross validation (k ≥ 2) is to use all the possible data points for training as a whole.

9.2 Sequential model-based optimization

The most näıve HPO methods are random search and grid search. However, since both methods do
not use the observations, they are not efficient. To make use of the previous knowledge, sequential
model-based optimization (SMBO) has been invented.

9.2.1 Surrogate models

Since the objective function for HPO is expensive in most cases, we use a surrogate model to yield
promising configurations. For surrogate models, we need to achieve accurate predictions and the
model uncertainty representation. Typically, we employ a machine learning model and here we
discuss gaussian process (GP) regression model. GP is a stochastic process assuming that the objective
function f(θ) follows the gaussian distribution with an arbitrary configuration as follows:

f(θ) ∼ N (µ(θ), σ2(θ))

where the mean and the variance are approximated by the following:

µ(θ) = k⊤(K + λ2I)−1f

σ2(θ) = k(θ, θ)− k⊤(K + λ2I)−1k

where λ is the coefficient of L2 regularization term, the observation f = [f(θ1), · · · , f(θN)], k =
[k(θ, θ1), · · · , k(θ, θN)] and I is an N -dimensional identity matrix. Additionally, k : Θ × Θ → R is a
kernel function and K is the covariance matrix with the (i, j)-th element k(θi, θj). More formally, the
following holds:

f̃ ∼ N (f ,K)

Note that a random forest based model (SMAC) and Bayesian neural networks based models are also
available.

9.2.2 Acquisition functions

In the SMBO, while we would like to exploit the knowledge, we would like to explore the unfamiliar
region to avoid falling into the local minimum. The typical method is the expected improvement (EI)
as follows:

EIf⋆(θ) =

∫ f⋆

−∞
(f⋆ − f)p(f |θ)df

= σ(θ)

(
z(θ)Φ(z(θ)) + ϕ(z(θ))

)

Machine Learning / Shuhei Watanabe 23/26

Algorithm 5 Successive halving

R,n, η(> 1) ▷ Running cost, the number of configurations to be evaluated and cut-off ratio
1: function Successive Halving
2: N = ⌊log2n⌋,Sample [θ1, · · · , θn]
3: for i = 0, 1, . . . , N − 1 do
4: Train the survived configurations with the budget of ⌊ηi−N+1R⌋
5: n = ⌊η−in⌋, pick the top n configurations

6: return θ⋆

where z(θ) = f⋆−µ(θ)
σ(θ) , ϕ is the standard normal distribution and Φ is the cumulative distribution of

the standard normal distribution. Other acquisition functions are lower confidence bound (LCB) and
upper confidence bound (UCB) as follows:

UCB(θ) = µ(θ) + βσ(θ)

LCB(θ) = µ(θ)− βσ(θ)

In most cases, we use UCB for maximization problems and LCB for minimization problems. Another
example is the following probability of improvement (PI):

PIf⋆(θ) =

∫ f⋆

−∞
p(f |θ)df

Since this acquisition function considers the probability of improvement, the amount of improvement
does not matter and thus it is likely to exploit more rather than exploring. Finally, we introduce the
Thompson sampling. This method samples f̃ from the surrogate model f(θ) and maximize in the
sampled function space:

f̃(θ) ∼ p(f |θ)
θ⋆ ∈ argminθf̃(θ)

Since the Thompson sampling is a stochastic method, it is robust to the parallel evaluation settings.

9.3 Multi-fidelity optimization

Since the evaluation of HPO is expensive, we often use multi-fidelity optimization to accelerate HPO.
The major example is learning curve prediction and the other examples are successive halving
and hyperband. Successive halving is cutting off poor configurations and putting much more budget
on better configurations. The major issue of the algorithm is the trade-off between the performance and
budget. Basically, when we take large n, it leads to aggressive cut-off and poor performance. On the
other hand, while smaller n leads to good performance, it leads to less reduction of the computational
time. Therefore, Hyperband controls such trade-off by changing the parameter iteratively. Note that
since it does not make sense to use early-stopping when the ranking between configurations changes
largely depending on budget, we have to pay attention to the rank correlation. More formally, the
order f(θi, b) < f(θj , b) should be preserved for larger budget B(> b), i.e. f(θi, B) < f(θj , B) where
b,B are budgets for a given model f .

10 Error metrics

10.1 Binary classification

In real-world problems, class distributions are not necessarily uniform. Furthermore, when datasets
include 99% of label 0 and 1% of label 1, we can easily achieve the 99% accuracy by predicting 0 for

Machine Learning / Shuhei Watanabe 24/26

Algorithm 6 Hyperband

1: function Hyperband
R, η(> 1)

2: smax = ⌊logηR⌋, B = (smax + 1)R
3: for s = smax, . . . , 0 do
4: n = ⌈ηs smax+1

s+1 ⌉
5: θ = successive halving(n,R, η)

6: return θ⋆

Table 3: More detailed results used for imbalanced datasets.

label / prediction Positive Negative

Positive True positive False negative
Negative False positive True negative

every input. Therefore, it is important to divide the result into the four patterns listed in Table 3.
Using these results, we define the following metrics:

1. True positive rate (TPR or recall): TP
TP + FN = # of True Positive

of Positive labels , prefer FP to FN such as
cancer test

2. False positive rate (FPR): FP
TN + FP = # of False Positive

of Negative labels , prefer FN to FP

3. precision: TP
TP + FP = # of True Positive

of Positive predictions , prefer FN to FP such as optimal coupon allocation

4. F1 score: 2(1
precision + 1

recall)
−1, trade-off of precision and recall

False positive rate and true positive rate are used in receiver operating characteristic (ROC). ROC
takes FPR for the horizontal axis and TPR for the vertical axis as shown in Figure 3. In the normal
setting, trained models predict label 1 when the output f(x) ≥ ϵ = 1

2 . ROC is plotted by observing
the TPR and FPR for arbitrary thresholds ϵ. In the best case, TPR is close to 1 and FPR is close
to 0. This is realized by the maximization of AUC (area under the ROC curve). AUC is maximized
through the following pairwise rank proxy:

argmaxwAUC(y, ŷ(x;w)) ≃ argmaxw
∑

i|yi=0

∑
j|yj=1

σ(f(xi;w)− f(xj ;w))

where σ is the sigmoid function. Note that the sigmoid function is introduced to ignore the pairs with
larger values and intensively optimize the pairs with smaller values. Another metric is F1 score. F1
score balances the trade-off between precision and recall. Since this metric is non-differentiable and
non-decomposable 26, the optimization is performed via the following practical heuristic:

1. oversample the minority class

2. train the model with a proxy of the misclassification rate (e.g. cross entropy loss)

3. tune all the hyperparameters including the threshold ϵ with respect to the validation F1 score

26This is because recall and precision are defined on mini-batch.

Machine Learning / Shuhei Watanabe 25/26

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC of random choice
ROC

Figure 3: ROC of the case of positive : negative = 0.2 : 0.8. The optimal threshold ϵ is the one that
achieves the maximum margin between ROC and ROC of random choice. In this figure, the maximum
margin is achieved at the false positive rate of 0.2.

10.2 Regresion task

Root mean square error is used for regression tasks in most cases. However, when we would like to
robustify models against outliers, we often employ mean absolute error. Additionally, the following
mean absolute percentage error can optimize independently from the scale:

1

N

N∑
i=1

∥∥∥∥yi − ŷi
yi

∥∥∥∥
The major issue of this metric happens when the label y is close to zero. Therefore, the alternative
metric is the following mean absolute scaled error:

1

N

N∑
i=1

∥∥∥∥∥ yi − ŷi
1

N−1

∑N
j=2 ∥yj − yj−1∥

∥∥∥∥∥
The advantage of this metric is the stability. On the other hand, we cannot interpret the metric as
percentage anymore.

10.3 Ranking

In this section, we assume that our problem is to rank based on the relevance of articles given a query.
Suppose we have a dataset D = {(xi, yi)}Ni=1 where xi is the feature vector and yi is the relevance.
The goal is to learn f(x) that predicts the relevance.

10.3.1 Discounted cumulative gain (DCG) and normalized DCG (NDCG)

The DCG until the K-th best is computed as follows:

K∑
i=1

2yi − 1

log(i+ 1)

where yi is sorted according to the estimated relevance f(xi;w). In other words, f(xi;w) ≥ f(xj ;w)
holds for ∀i, j s.t. i < j. The K-th NDCG is computed as the ratio of the K-th DCG and the K-th
ideal DCG, i.e. DCG computed under the condition where y1 ≥ y2 ≥ · · · ≥ yN .

Machine Learning / Shuhei Watanabe 26/26

10.4 Pairwise rank loss

Given a ranking order among all articles of query q:

i <q j iff yi > yj

Then we estimate the probability that a pair is correctly ranked as:

p̂i,j = p̂(i <q j) =
1

1 + e−(f(xi;w)−f(xj ;w))

The loss of a pair i, j is the following:

Li,j = −pi,j log p̂i,j − (1− pi,j) log (1− p̂i,j)

where

pi,j =

 1 (yi > yj)
0 (yi = yj)
−1 (yi < yj)

Using the chain rule, we can derive the derivative of this equation.

10.4.1 LambdaRank heuristic

LambdaRank heuristic puts more weights on the change which leads to more increse in the NDCG.
Roughly speaking, this method prioritizes the change in the higher ranks. Such importance is measured
by the following:

λi,j ≃ −
∥∆NDCGi,j∥

1 + ef(xi;w)−f(xj ;w)

where ∆NDCGi,j is the increase of NDCG by swapping the ranking positions of i, j. The update of
the weights are performed by the following:

w = w + α

N∑
i=1

λi
∂f(xi;w)

∂w

λi =
∑
j ̸=i

λi,j −
∑
j ̸=i

λj,i

