
High Performance Computing
with Python
Final Report

Shuhei Watanabe

5171091
watanabs@informatik.uni-freiburg.de

September 8, 2021

Contents

1 Introduction 2

2 Lattice Boltzmann method 3
2.1 The Boltzmann transport equation (BTE) . 3
2.2 Time-step update of the BTE . 3
2.3 Boundary handling . 4

2.3.1 Bounce-back from objects . 5
2.3.2 Periodic boundary conditions (PBC) . 5

3 Implementation 6
3.1 Main routine . 6
3.2 Parallel computation by MPI . 7
3.3 Software quality . 8

4 Numerical results 10
4.1 Validation experiments . 10

4.1.1 Shear wave decay . 10
4.1.2 Couette flow . 13
4.1.3 Poiseuille flow . 14

4.2 Lid-driven cavity . 14

5 Conclusions 18

1

1

Introduction
Large-scale physics experiments often require large budgets and it is hard to perform experiments
with several different parameters. For this reason, many research has been performed to simulate
real-world phenomenon. One example is fluid flow and fluid flow simulations allow us to deeply
understand how car body shapes relate to the aerodynamic drag and how to optimize car designs
through the simulations with various designs rather than making real cars [1].

Such simulations require a scheme to simulate the physical states at each time step and
the lattice Boltzmann method (LBM) [2] is one of the well-known schemes for the fluid flow
simulation method. The LBM approximates the physical states of a myriad of microscopic
particles, i.e. usually obtained by solving the Navier-Stokes equation, by mesoscale physical
states at each lattice grid. The physical states or moments are iteratively simulated based on
the Maxwell velocity distribution function [3] and the fluid flow at each time step is derived
from the moments. The major advantages of the LBM are the followings:

• Simple implementation: The governing equations of each moment are simple and the
collision handling only considers the adjacent lattices.

• Parallelization: The LBM scales well with respect to the amount of parallel compuat-
tional resources due to the local dynamics nature [4]

For those reasons, the LBM is one of the most successful methods and we would like to introduce
the LBM in this paper. The paper structure is as follows:

1. Lattice Boltzmann method: Show the theoretical aspects and how to discretize the
equations

2. Implementation: Provide pseudocodes and how to efficiently compute the LBM

3. Numerical results 1: Provide how we can validate the implementations and show how
effective the parallel computation is

All the codes follow pep8 style 2 and are tested using unittest 3. Furthermore, the step-
by-step reproduction instruction is available in README.md on this repository.

1 The code is available at: https://github.com/nabenabe0928/high-performance-computing-fluid-dynamics-
with-python

2https://www.python.org/dev/peps/pep-0008/
3https://docs.python.org/3/library/unittest.html

2

2

Lattice Boltzmann method
In this chapter, we describe how the equations used in the LBM are derived. More specifically,
we explain the Boltzmann transport equation (BTE) [5], i.e. the basic equations of the
kinetic theory of gases and how to handle the boundary conditions.

2.1 The Boltzmann transport equation (BTE)
The BTE formulates the time evolution of the particle probability density function f(x,v, t)
given the microscopic velocity v and the position x of particles. The BTE relaxes the particle
distribution to the Maxwell velocity distribution function [3] and the approximation of the
relaxation of f towards f eq is described as follows [6]:

df(x,v, t)
dt

= −f(x,v, t)− f eq(v; ρ(x, t),u(x, t), T (x, t))
τ

(2.1)

where f eq is the statistical equilibrium, T (x, t) is the temperature at x of time step t, τ is a
characteristic time, ρ(x, t) is the macroscopic density and u(x, t) is the macroscopic velocity.
The characteristic time determines how quickly the fluid converges towards equilibrium. The
higher τ yields the slower convergence towards the equilibrium. Eq. (2.1) is used for the update of
the particle probability density function. Furthermore, this particle probability density function
f(x,v, t) is used for computing the physical states of the fluid, such as density and velocity. The
moments updates are performed via [7]:

ρ(x, t) =
∫
f(x,v, t)dv, and u(x, t) = 1

ρ(x, t)

∫
vf(x,v, t)dv. (2.2)

The underlying equations allow simulating fluid flow as seen in the latter parts of this paper.

2.2 Time-step update of the BTE
The aforementioned BTE is formulated in the continuous domain; therefore, we need to discretize
spatially and temporally to make the computation feasible by simulations. In this paper, we focus
on discretization in two-dimensional space. The discretization for space and time is performed
so that the equality condition of the following inequality (Courant-Friedrichs-Lewy condition)
holds [8, 9]:

ci∆t ≤ ‖∆xi‖

3

where ∆t is the time step size and ∆xi is the distance between the closest grid in the direction
of ci that is defined by:

c =
[
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]>
. (2.3)

Since ∆x = ∆y = ∆t = 1 satisfies the equality, we discretize the domain accordingly. Note that
this specific discretization in two-dimensional space with nine directions shown in Figure 2.1 is
called D2Q9. In this setting, we first discretize the particle probability density function in the
nine directions by subscripting as fi(x, t). Then Eq. (2.2) becomes the followings:

ρ(x, t) =
∑
i

fi(x, t), and u(x, t) = 1
ρ(x, t)

∑
i

cifi(x). (2.4)

Note that we regard the density as a unit molecular mass in Eq. (2.4). Additionally, the equi-
librium in Eq. (2.1) is computed as:

fi(x + ci∆t, t+ ∆t)− fi(x, t)︸ ︷︷ ︸
streaming

= −ω
[
fi(x, t)− f eq

i (x, t)
]

︸ ︷︷ ︸
collision

(2.5)

where ω = ∆t/τ is the relaxation parameter. The equilibrium is computed as [10]:

f eq
i (x, t) = wiρ(x, t)

[
1 + 3ci · u(x, t) + 9

2(ci · u(x, t))2 − 3
2‖u(x, t)‖2

]
(2.6)

where the index i corresponds to Figure 2.1 and w = [4
9 ,

1
9 ,

1
9 ,

1
9 ,

1
9 ,

1
36 ,

1
36 ,

1
36 ,

1
36]. In the streaming

step, the grid receives the particle flow fi(x+ci∆t, ·) from its nine adjacent grids. In the collision
step, we relax the probability density function towards the equilibrium f eq

i by considering the
effects of the particle collision.

Figure 2.1: (a) The discretization on the velocity space according to D2Q9. (b) The uniform
two-dimensional grids for the discretization in the physical space. This figure is cited from
Figure 1 in [11].

2.3 Boundary handling
In this section, we briefly discuss how we handle the particles that bump into boundaries. Note
that the boundary handling, except the pressure periodic boundary conditions, is performed after
the streaming step that is discussed in the previous section and we usually use the direction that
is opposite to the direction i for the bounce-back. For this reason, we will denote f?i as the i-th
direction particle probability density function after the streaming step and i? as the direction
opposite, i.e. reflected direction, to i. Those directions follow D2Q9 illustrated in Figure 2.1.
Additionally, there are the following two ways to implement the boundary conditions [12]:

4

1. Dry nodes: The boundaries are located on the link between nodes

2. Wet nodes: The boundaries are located on the lattice nodes
Since the boundary handling will be tedious when the boundaries are placed on the lattice nodes,
and this is the case for wet nodes, we use dry nodes for the implementation.

2.3.1 Bounce-back from objects

The most basic boundary condition is a rigid wall or the bounce-back boundary condition.
In this condition, we apply the process with the no-slip condition at the boundary. The equation
at the boundary is computed as [13]:

fi(xb, t+ ∆t) = f?i?(xb, t). (2.7)

When the boundary moves with the velocity of Uw, the variation in the moments of particles
must be taken into consideration and the equation is modified as follows [13]:

fi(xb, t+ ∆t) = f?i?(xb, t)− 2wiρw
ci ·Uw
c2

s
(2.8)

where cs = 1√
3 is the speed of sound and ρw is the density at the wall. Note that we use

Uw = [Uw, 0]> in this paper. ρw is usually computed by one of the followings [14, 15]:
1. Take the average density ρ̄ of the simulated field

2. Extrapolate ρw using the particle probability density function in the physical domain by
Eq. (19) in [14]

Although we get similar velocity fields in lid-driven cavity by both solutions, the ex-
trapolation is highly unstable with respect to the wall velocity Uw(> 0.3) compared to the first
solution. For this reason, we take the first solution for this paper. Note that we can activate
the usage of the extrapolation by –extrapolation True from the command line as well.

2.3.2 Periodic boundary conditions (PBC)

In this section, we assume that we have boundaries at x = 0 (inlet) and (X − 1)∆x (outlet)
where X is the number of the lattice grid in the x-axis. The most basic PBC assumes that the
flow from outlet comes in from inlet, i.e. f(0, y, t) = f((X − 1)∆x, y, t) [13]. This condition
is implicitly implemented during the streaming operation. Another PBC handles the pressure
variation ∆p between inlet and outlet. Since the density ρ is computed as ρ = p

c2
s
where p is

the pressure, the density at the inlet ρin = pout+∆p
c2

s
and that at the outlet ρout = pout

c2
s

can be
computed accordingly given the constant pressure pout at the outlet and the pressure variation
∆p. Then the prestreaming f? at the inlet and the outlet are computed as [13]:

f?i (−∆x, y, t) = f eq
i (ρin,u((X − 1)∆x, y, t)) + (f?i ((X − 1)∆x, y, t)− f eq

i ((X − 1)∆x, y, t)),
f?i (X∆x, y, t) = f eq

i (ρout,u(0, y, t)) + (f?i (0, y, t)− f eq
i (0, y, t))

(2.9)
where x = −∆x and x = X∆x are extra layers of nodes for the implementation and −∆x (an
extra layer at the inlet) and X∆x (an extra layer at the outlet) correspond to (X − 1)∆x and
0. Note that since the pressure PBC computes the prestreaming f?, it must be performed
before the streaming operation unlike the bounce-back.

5

3

Implementation
In this chapter, we describe how the LBM is implemented in Python and how to compute the
LBM in parallel. All the implementations are assuming that the physical domain is discretized
by D2Q9 and the horizontal axis is x and the vertical axis is y, respectively. Note that entire
codes use Numpy 1 and mpi4py 2. Throughout the chapter, numpy is imported as np.

3.1 Main routine
Algorithm 1 shows the pseudocode of the main processing in the LBM. Recall that f(·, t).shape =
(X,Y, 9), ρ(·, 0).shape = (X,Y) and u(·, 0).shape = (X,Y, 2). First, we provide the initial values
for the density and the velocity. Then, we compute the probability function and equilibrium
and apply the collision step. The equilibrium implementation is shown in Algorithm 2. After
applying the equilibrium, we perform the streaming operation shown in Algorithm 3 and slide
each quantity to the adjacent cells. Finally, we apply the boundary handling at each boundary
cell as described in Algorithm 4 and update the density and the velocity as in Eq. (2.4). Note
that the order of each step might vary depending on literature [2, 13]. Since Python slows down
when using for loops and Python speeds up when replacing for loops with numpy processing, the
implementations use as much slicing as possible and high dependency on numpy achieves 100
times speed up depending on the settings [16].

Algorithm 3 uses the np.roll operation that enables to handle the PBC automatically. This
function rolls the array in the following manner:

np.roll(f [x][y][i], shift = ci, axis = (0, 1)) = f [nx][ny][i]

where nx = (x + ci[0])%X,ny = (y + ci[1])%Y , i is the direction index in D2Q9, and ci is
the vector that specifies the i-th direction in D2Q9. In Algorithm 4, we use in_indices and
out_indices to eliminate for-loop by slicing. Additionally, we compute ρw as described in
Section 2.3.1. Note that although the pressure PBC is included in Algorithm 4 for simplicity,
only the pressure PBC updates the pre-streaming f? and thus we need to perform it before the
streaming operation. Additioinally, the domain is extended with virtual nodes at both edges
of the periodic boundary in the pressure PBC so that we can handle the boundary condition
more easily.

1Numpy: https://numpy.org/
2mpi4py: https://mpi4py.readthedocs.io/en/stable/

6

Algorithm 1 The main routine of the lattice Boltzmann method
The grid size: X,Y , Relaxation factor : ω, Initial velocity: u0, Initial density: ρ0 . Inputs
Boundary conditions

1: function lattice boltzmann method
2: ρ(x, 0) = ρ0,u(x, 0) = u0 for all x ∈ [0, X)× [0, Y)
3: for t = 0, 1, . . . do
4: f eq(·, t) = equilibrium(ρ(·, t),u(·, t)) . Eq. (2.6)
5: f? = f + ω(f eq − f) . Eq. (2.5)
6: f(·, t+ 1) =streaming(f?(·, t)) . Eq. (2.5)
7: f(·, t+ 1) = boundary_handling(f(·, t+ 1), f?(·, t), f eq(·, t)) . Eq. (2.7), (2.8), (2.9)
8: ρ(·, t+ 1),u(·, t+ 1)=moments_update(f(·, t+ 1)) . Eq. (2.4)

Algorithm 2 equilibrium
w = np.array([49 ,

1
9 ,

1
9 ,

1
9 ,

1
9 ,

1
36 ,

1
36 ,

1
36 ,

1
36]), c in Eq. (2.3)

1: function equilibrium(ρ = ρ(·, t), u = u(·, t)) . u.shape = (X,Y, 2), ρ.shape = (X,Y)
2: u_norm2 = (u ** 2).sum(axis=-1)[..., None]
3: u_at_c = u @ c> . u_at_c.shape = (X,Y, 9)
4: w_tmp, ρ_tmp = w[None, None, ...], ρ[..., None] . Adapt the shapes to u_at_c
5: f eq = w_tmp * ρ_tmp * (1 + 3 * u_at_c + 4.5 * (u_at_c) ** 2)-1.5 * u_norm2
6: return f eq

3.2 Parallel computation by MPI
In order to process the LBM in parallel, we employ the spatial domain decomposition and the
messaging passing interface (MPI) so that we can compute the collision step of the LBM in
parallel. This is possible because the collision step does not require any communication between
processes [11]. Then, we explain how we divide the domain. Suppose we are provided the
number of processes of P , we first factorize P such that P = Px × Py where Px, Py ∈ Z+,
Px, Py = argminPx,Py (‖Py − Px‖) and Px ≤ Py if X ≤ Y otherwise Py ≤ Px. Then, we divide
the x-axis into Px intervals and the y-axis into Py intervals where any pairs of intervals Ii, Ij
in the same direction satisfy −1 ≤ ‖Ii‖ − ‖Ij‖ ≤ 1. Note that ‖I‖ is the size of the interval I.
This split of the domain achieves the most balanced distribution of the computation. For the
streaming step, we need to consider particles moving from one process to another. We implement
it using so-called ghost cells around the actual computational domain. Figure 3.1 shows the
conceptual visualization of how each process communicates and ghost cells work. Since each
process requires the four edges of adjacent processes, the communications are required four

Algorithm 3 Streaming operation
c in Eq. (2.3)

1: function streaming(f? = f?(·, t))
2: fpost = np.zeros_like(f?)
3: for i = 0, 1, . . . , 8 do
4: fpost[..., i]=np.roll(f?[..., i], shift=ci, axis=(0, 1)) . Slide f? one step to c[i]
5: return fpost

7

Algorithm 4 Boundary conditions (Pressure PBC is also included for simplicity)
The indices in D2Q9 s.t. the flow comes in given boundaries: in_indices
The indices in D2Q9 s.t. the flow goes out given boundaries: out_indices

1: function boundary handlling(f(·, t+ 1) = f, f? = f?(·, t), f eq = f eq(·, t))
2: if Pressure PBC then . fluid flows from x = 0 to X − 1
3: # Note: Pressure PBC must be applied before streaming operation
4: f eq

in , f
eq
out = equilibrium(ρin, u[-2]), equilibrium(ρout, u[1])

5: f?[0, :,out_indices]=f eq
in [:,out_indices].T+(f?[-2, :,out_indices]-f eq[-2, :,out_indices])

6: f?[-1, :,in_indices]=f eq
out[:,in_indices].T+(f?[1, :,in_indices] - f eq[1, :,in_indices])

7: if Rigid wall then . The case when the wall is at the top
8: f [:, -1, in_indices] = f?[:, -1, out_indices]
9: if Moving wall then . The case when the wall is at the top

10: coef = np.zeros_like((X, Y, 9))
11: value = 2 * w[out_indices] * (c[out_indices] @ u) / cs ** 2
12: coef[:, -1, out_indices] = value[np.newaxis, :]
13: f [:, -1, in_indices] = f?[:, -1, out_indices] −ρw * coef[:, -1, out_indices]
14: return f

times for each process. Algorithm 5 shows the implementation using mpi4py. grid_manager is
the self-developed module that manages useful information related to the process location, the
adjacent relation, and so on. Sendrecv function is used for the communication and each process
receives an array from dest that is sent by neighbor and sends an array sendbuf to neighbor.
Note that buf is the abbreviation of buffer and used for the buffer to communicate data.

3.3 Software quality
All the codes follow pep8 style 3 and Google Python Style documentation string 4. In
order to make the codes robust to unexpected errors, we introduce Flake8 5 and MyPy static
typing check 6 as well. Furthermore, all the components are tested by unittest7 and we provide
requirements.txt and the shell scripts for the main experiments to reproduce the complete
running conditions. Those tools guarantee the reproducibility of the experiments. Further-
more, the implementations focus on abstraction and most codes are abstracted to reduce the
coding lines as much as possible. Therefore, the codes are highly reusable and the implemen-
tation has only one explicit coding for each algorithm provided in this chapter. Furthermore,
ArgumentParser allows users to pass an arbitrary setting to run the experiments and it con-
tributes to the generality in this code. All the instructions are available at Github repository
described in Chapter 1.

3https://www.python.org/dev/peps/pep-0008/
4https://google.github.io/styleguide/pyguide.html
5https://flake8.pycqa.org/en/latest/
6http://mypy-lang.org/
7https://docs.python.org/3/library/unittest.html

8

Figure 3.1: Domain decomposition and communication strategy in MPI. As described in the
main text, we first divide each axis into Px and Py intervals and divide by the intervals. Each
rank has green lattice points and this area is the active physical domain. Then we add additional
ghost cells for buffer (gray lattice points). During each communication step, the outermost green
active lattice sends the data to the adjacent outermost ghost lattice (blue arrows). The figure
is cited from Figure 2 in [11].

Algorithm 5 The communication of the particle probability density function
Process and lattice grids management: grid_manager

1: function communication
2: for dir in grid_manager.neighbor_directions do . Iterate over the D2Q9 index
3: dx, dy = ci
4: sendidx = grid_manager.step_to_idx(dx, dy, send=True)
5: recvidx = grid_manager.step_to_idx(dx, dy, send=False)
6: neighbor = grid_manager.get_neighbor_rank(dir)
7: if dx == 0 then . send to top and bottom
8: sendbuf = f [:, sendidx, ...].copy()
9: grid_manager.rank_grid.Sendrecv(sendbuf=sendbuf, dest=neighbor,

10: recvbuf=recvbuf, source=neighbor)
11: f [:, recvidx, ...] = recvbuf
12: else if dy == 0 then . send to left and right
13: sendbuf = f [sendidx, ...].copy()
14: grid_manager.rank_grid.Sendrecv(sendbuf=sendbuf, dest=neighbor,
15: recvbuf=recvbuf, source=neighbor)
16: f [recvidx, ...] = recvbuf
17: return f

9

4

Numerical results
In the previous chapter, we discuss the implementation details and how we apply the LBM to
various settings. In this chapter, we first illustrate how to validate the implementations and
then show the visualizations and numerical results obtained from the series experiments.

4.1 Validation experiments
In the physics simulation, it is always important to validate whether the implementations are
correct. Therefore, we first show how to validate the implementation using several examples.

4.1.1 Shear wave decay

The shear wave decay represents the time evolution of a velocity perturbation in the flow. Since
the viscosity decays the velocity of the flow, the velocity converges to zero in the end. When we
set the following sinusoidal perturbation in the velocity as the initial condition:

u(x, t = 0) =
[
ux(y, t = 0)

0

]
=
[
ε sin 2πy

Y
0

]
. (4.1)

Then the analytical solution for the time evolution of the velocity is calculated as follows [17]:

ux(y, t) = ε exp
(
−ν
(2π
Y

)2
t

)
sin 2πy

Y
. (4.2)

Note that this result is obtained using Navier-Stokes equations for incompressible fluid and the
assumptions that the pressure term ∇p and the convection term (u·∇)u are negligible compared
to the viscosity term ν∇2u. In Figure 4.1, we show the plot of both simulated results and the
analytical solution of sinusoidal velocity. Note that the initial condition follows Eq. (4.1). As
seen in the figure, the simulated results and the analytical solution perfectly fit and thus we
could validate our implementation of rigid wall and moments updates. Figure 4.2 shows the
density distribution over time. This simulation uses the sinusoidal density in the x-direction

ρ(x, 0) = ρb + ε sin 2πx
X

. (4.3)

where ρb is a positive constant value. As seen in the figure, the sinusoidal density also yields
the convergence. On the other hand, the sinusoidal density has a swing of the maxima and the
minima unlike the sinusoidal velocity.

10

0 10 20 30 40 50
y position

0.01

0.00

0.01

V
el

oc
ity

 u
x(x

=
25

,y
)

Analytical Solution
Simulated Result

(a) t = 0

0 10 20 30 40 50
y position

0.01

0.00

0.01

V
el

oc
ity

 u
x(x

=
25

,y
)

(b) t = 150

0 10 20 30 40 50
y position

0.01

0.00

0.01

V
el

oc
ity

 u
x(x

=
25

,y
)

(c) t = 300

0 10 20 30 40 50
y position

0.01

0.00

0.01

V
el

oc
ity

 u
x(x

=
25

,y
)

(d) t = 450

0 10 20 30 40 50
y position

0.01

0.00

0.01

V
el

oc
ity

 u
x(x

=
25

,y
)

(e) t = 600

0 10 20 30 40 50
y position

0.01

0.00

0.01
V

el
oc

ity
 u

x(x
=

25
,y

)

(f) t = 750

0 10 20 30 40 50
y position

0.01

0.00

0.01

V
el

oc
ity

 u
x(x

=
25

,y
)

(g) t = 900

0 10 20 30 40 50
y position

0.01

0.00

0.01

V
el

oc
ity

 u
x(x

=
25

,y
)

(h) t = 1050

0 500 1000 1500 2000 2500 3000
Time step t

0.000

0.005

0.010

V
el

oc
ity

 u
x(y

=
12

) Analytical Solution
Simulated Result

(i) Time evolution of velocity at y = arg maxy′ ux(y′, t = 0)

Figure 4.1: The time evolution of the sinusoidal velocity in Eq. (4.1) at the x = 25 in the lattice
grid size of (50, 50). The x-axis shows the location in the y direction and the y-axis shows the
magnitude of velocity at the corresponding location. The coefficients ε in Eq. (4.1) and the
initial density ρ0 are set to 0.01 and 1.0 respectively. The relaxation term ω is set to 1.0.

As discussed, moment fluctuations decay exponentially and such a decay is represented as
follows [18, 19]:

Qt(t) = exp
(
−ν
(2π
X

)2
t

)
(4.4)

where Q(x, t) = εQx(x)Qt(t) and Q(x, t) is one of the moment quantities. Note that we assume
that the assumptions for Eq. (4.2) hold and the case of the sinusoidal velocity is equivalent to
Eq. (4.2) [17]. We perform the experiments to validate the implementation via the viscosity
estimated by Eq. (4.4) using the exact experiment settings for Figure 4.1 and Figure 4.2 except
the relaxation term ω. The analytical viscosity is computed as ν = c2

s (1
ω −

1
2) [2]. For the

experiments, the simulated viscosity is computed based on the exponential decay curve, i.e.
Eq. (4.4), of the density and velocity using curve_fit 1. curve_fit approximates the optimal
viscosity ν from the observations. Since the densities swing so much and a smooth exponential
decay curve is not obtained, we only take the maximum of the swinging. Such time-series data is
obtained by argrelextrema 2. The results are shown in Figure 4.3. Based on the results, ω close
to 0.0 and 2.0 leads to numerical instability. Otherwise, the simulated results and analytical
solution fit perfectly. Therefore, we need to avoid using ω closer to 0 or 2 for more accurate
results.

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
2https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.argrelextrema.html

11

0 10 20 30 40 50
x position

0.99

1.00

1.01

D
en

si
ty

(x

,y
=

25
)

Simulated Result

(a) t = 0

0 10 20 30 40 50
x position

0.99

1.00

1.01

D
en

si
ty

(x

,y
=

25
)

(b) t = 150

0 10 20 30 40 50
x position

0.99

1.00

1.01

D
en

si
ty

(x

,y
=

25
)

(c) t = 300

0 10 20 30 40 50
x position

0.99

1.00

1.01

D
en

si
ty

(x

,y
=

25
)

(d) t = 450

0 10 20 30 40 50
x position

0.99

1.00

1.01

D
en

si
ty

(x

,y
=

25
)

(e) t = 600

0 10 20 30 40 50
x position

0.99

1.00

1.01
D

en
si

ty

(x
,y

=
25

)

(f) t = 750

0 10 20 30 40 50
x position

0.99

1.00

1.01

D
en

si
ty

(x

,y
=

25
)

(g) t = 900

0 10 20 30 40 50
x position

0.99

1.00

1.01

D
en

si
ty

(x

,y
=

25
)

(h) t = 1050

0 500 1000 1500 2000 2500 3000
Time step t

1.00

1.01

D
en

si
ty

(x

=
12

,y
=

25
)

Simulated Result
Analytical decay

(i) Time evolution of density at x = arg maxx′ ρ(x′, t = 0)

Figure 4.2: The time evolution of the sinusoidal density in Eq. (4.3) at y = 25 in the lattice
grid size of (50, 50). The x-axis shows the location in the x direction and the y-axis shows the
magnitude of density. The coefficients ε and ρb in Eq. (4.3) are set to 0.01 and 1.0 and the
velocity is initialized by u(x, 0) = (0, 0). The relaxation term ω is set to 1.0.

0.0 0.5 1.0 1.5 2.0
Relaxation term

10 6

10 4

10 2

100

vi
sc

os
ity

 (L

og
 sc

al
e)

Analytical viscosity
Simulated result

(a) Sinusoidal density

0.0 0.5 1.0 1.5 2.0
Relaxation term

10 6

10 4

10 2

100

vi
sc

os
ity

 (L

og
 sc

al
e)

Analytical viscosity
Simulated result

(b) Sinusoidal velocity

Figure 4.3: The simulated viscosity value over various relaxation values ω. The analytical
solution uses ν = c2

s (1
ω −

1
2) and the simulated viscosity ν is approximated from an exponential

decay curve in Eq. (4.4). The simulation is performed T = 3000 steps and we take the maximum
magnitude of ‖ux‖ for (a) and ‖ρ − ρb‖ for (b) to fit the curve. Note that (a) uses the same
parameters as in Figure 4.1 and (b) uses the same parameters as in Figure 4.2.

12

Figure 4.4: The conceptual visualizations of the Couette flow (Left) and Poiseuille flow (Right).

4.1.2 Couette flow

The Couette flow is the flow between two walls as shown in Figure 4.4: One is fixed and the
other moves horizontally with the velocity of Uw. The flow is caused by the viscous drag force
acting on the fluid. Since the Couette flow also has an analytical solution, we can validate the
implementation of the moving wall. The analytical solution for Figure 4.4 is given by

ux(·, y) = Y − y
Y

Uw

[20] where Y is the distance between the two walls and ux(·, y) is the horizontal velocity of
the flow given a position (x, y). Note that ux(·, y) does not depend on x. In the experiment,
we apply the bounce-back boundary condition at the moving wall and the rigid wall and the
PBC at the inlet and outlet. As shown in Figure 4.5, the flow velocity iteratively approaches
the analytical solution and it perfectly fits in the end and the velocity stops growing at the
time step of t = 6000 ∼ 10000. This experiment validates the moving wall implementation.

0.00 0.02 0.04 0.06 0.08 0.10
Velocity ux(x = 25, y)

0

20

40

y
po

si
tio

n

Rigid wall
Moving wall
Analytical solution

0
1500
3000
4500
6000
7500
9000

Time step

Figure 4.5: The velocity evolution of every 500 time steps at x = 25 in the lattice grid size of
(50, 50) until the time step of t = 10000. The wall velocity Uw at the bottom and the relaxation
term ω are set to 0.1 and 1.0 respectively. We use dry node as described in Section 2.3
and the computation of wall density follows Section 2.3.1. The initial density and velocity are
ρ(x) = 1.0,u(x) = (0, 0).

13

4.1.3 Poiseuille flow

The Poiseuille flow is the flow between two non-moving walls as shown in Figure 4.4. The flow
is caused by a constant pressure difference dp

dx in the horizontal direction of the two walls. The
Poiseuille flow also has the analytical solution and we can validate the implementation of the
pressure PBC. The analytical solution for Figure 4.4 is given by

ux(·, y) = − 1
2ρ̄ν

dp

dx
y(Y − y)

[21] where ρ̄ is the average density. In the experiment, we apply the bounce-back boundary
condition at the moving wall and the rigid wall and the pressure PBC at the inlet and outlet.
Figure 4.6 presents the results and the simulated results approach the analytical solution. In the
end, it fits completely and the velocity stops growing at the time step of t = 7000 ∼ 10000.

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Velocity ux(x = 25, y)

0

20

40

y
po

si
tio

n

Analytical solution
0
1500
3000
4500
6000
7500
9000

Time step

Figure 4.6: The velocity evolution of every 500 time steps at x = 25 in the lattice grid size of
(50, 50) until the time step of t = 10000. The relaxation term ω is set to 1.0. The density at
the inlet ρin and the density at the outlet ρout are set to 1.005 and 1.0 respectively. Then dp

dx is
computed by c2

s (ρout − ρin)/X. The initial density and velocity are ρ(x) = 1.0,u(x) = (0, 0).

4.2 Lid-driven cavity
Finally, we handle a concrete example. In this paper, the lid-driven cavity shown in Figure 4.7
is simulated. The lid-driven cavity simulates the flow inside a box with three rigid walls and one
moving wall, i.e. a lid. In this simulation, the turbulence is caused when the following Reynolds
number is larger than 1000 [22]:

Re = LU

ν

where L is the characteristic length parameter of the body and U is the stream flow velocity.
One key property of the Reynolds number is that two flow system is dynamically similar if
the Reynolds number and the geometry are similar [23]. Therefore, we present the results with
various viscosity ν and the wall velocity U = Uw that satisfy the Reynolds number of 1000 under
L = X = Y = 300 in Figure 4.8. In the figures, all the settings converge to a similar flow in
the end as indicated in the key property of the Reynolds number. Figure 4.9 shows the time
evolution of the streaming plot with the Reynolds number of 1000. The series of figure shows

14

Figure 4.7: The conceptual visualizations of the lid-driven cavity.

Table 4.1: The validation of the parallel implementation by comparing the velocity field in
the serial and the parallel implementations. The parallel implementation is performed by the
number of processes P = 9. We set the lattice grid size (X,Y) = (30, 30), the wall velocity
Uw = 0.1 and the viscosity ν = 0.03 and perform T = 10000 updates. The initial density and
velocity are ρ(x) = 1.0,u(x) = (0, 0).

Min Max Sum of absolute values

Velocity up in parallel implementation -0.03488 0.08998 20.12832
Velocity us in serial implementation -0.03488 0.08998 20.12832
The absolute difference ‖up − us‖ 0.0 0.0 0.0

that the streaming changes gradually and starts to have spirals at a corner due to the turbulence.
The time evolution of the velocity streaming plot is provided in Github 3. Note that
all the experiments for Figure 4.8, 4.9 are performed using MPI of 9 processes and Table 4.1
shows the validation of the parallel implementation. Since the summation of the absolute error
of the velocity over the whole domain is 0.0, it is obvious that the parallel implementation
behaves identically to the serial implementation. The test code for an arbitrary setting
is available at run_scripts/compare_parallel_vs_serial.sh in the repository.

This experiment requires a long time to complete. For example, it takes 1 hour to finish one
simulation using intel core i7–10700 and 32GB RAM. Recall that the advantage of the LBM is
to allow us to compute the simulation in parallel easily. For this reason, we test the scalability
of this simulation using various numbers of processes. Note that all the experiments related to
the scaling test are performed on bwUniCluster 4. The implementation follows Section 3.2
and each thread is bound to one processor. Figure 4.10 shows the plot of MLUPS, a.k.a. million
lattice updates per second, and the number of processes. As seen in the figure, the larger grid
size leads to less MLUPS with the smaller number of processes. This is due to the heavy load
on small number of processors. On the other hand, as the number of processes becomes larger,
the simulation with a larger domain exhibits higher efficiency. Ideally, the MLUPS should grow
linearly with respect to the number of processes. However, all the settings yield slowdown
from approximately X×Y

1000 processes in Figure 4.10 due to the latency of the communication and
the waiting for the synchronization as described in Amdahl’s law [24]. It explains why larger
domains lead to more scalability with respect to the number of processes.

3https://github.com/nabenabe0928/high-performance-computing-fluid-dynamics-with-python/
4https://wiki.bwhpc.de/e/Category:BwUniCluster_2.0

15

0 20 40 60
x position

0

20

40

60

y
po

si
tio

n

(a) Uw = 0.1, ν = 0.03

0 20 40 60
x position

0

20

40

60

y
po

si
tio

n

(b) Uw = 0.2, ν = 0.06

0 20 40 60
x position

0

20

40

60

y
po

si
tio

n

(c) Uw = 0.3, ν = 0.09

0 20 40 60
x position

0

20

40

60

y
po

si
tio

n

(d) Uw = 0.4, ν = 0.12

0 25 50 75 100 125 150
x position

0

25

50

75

100

125

150

y
po

si
tio

n

(e) Uw = 0.1, ν = 0.03

0 25 50 75 100 125 150
x position

0

25

50

75

100

125

150

y
po

si
tio

n

(f) Uw = 0.2, ν = 0.06

0 25 50 75 100 125 150
x position

0

25

50

75

100

125

150

y
po

si
tio

n

(g) Uw = 0.3, ν = 0.09

0 25 50 75 100 125 150
x position

0

25

50

75

100

125

150

y
po

si
tio

n

(h) Uw = 0.4, ν = 0.12

0 50 100 150 200
x position

0

50

100

150

200

y
po

si
tio

n

(i) Uw = 0.1, ν = 0.03

0 50 100 150 200
x position

0

50

100

150

200

y
po

si
tio

n

(j) Uw = 0.2, ν = 0.06

0 50 100 150 200
x position

0

50

100

150

200

y
po

si
tio

n

(k) Uw = 0.3, ν = 0.09

0 50 100 150 200
x position

0

50

100

150

200

y
po

si
tio

n

(l) Uw = 0.4, ν = 0.12

0 50 100 150 200 250 300
x position

0

50

100

150

200

250

300

y
po

si
tio

n

(m) Uw = 0.1, ν = 0.03

0 50 100 150 200 250 300
x position

0

50

100

150

200

250

300

y
po

si
tio

n

(n) Uw = 0.2, ν = 0.06

0 50 100 150 200 250 300
x position

0

50

100

150

200

250

300

y
po

si
tio

n

(o) Uw = 0.3, ν = 0.09

0 50 100 150 200 250 300
x position

0

50

100

150

200

250

300

y
po

si
tio

n

(p) Uw = 0.4, ν = 0.12

Figure 4.8: The stream plots of the lid-driven cavity with the lattice grid size of
(75, 75), (150, 150), (225, 225), (300, 300). The setting of the wall follows Figure 4.7. (a) – (d),
(e) – (h), (i) – (l), (m) – (p) are chosen to satisfy the Reynolds number 250, 500, 750, 1000,
respectively. We perform the update T = 100000 times for each setting. The computation of
wall density follows Section 2.3.1. The initial density and velocity are ρ(x) = 1.0,u(x) = (0, 0).

16

0 50 100 150 200 250 300
x position

0

50

100

150

200

250

300

y
po

si
tio

n

(a) t = 5000

0 50 100 150 200 250 300
x position

0

50

100

150

200

250

300

y
po

si
tio

n

(b) t = 20000

0 50 100 150 200 250 300
x position

0

50

100

150

200

250

300

y
po

si
tio

n

(c) t = 40000

0 50 100 150 200 250 300
x position

0

50

100

150

200

250

300

y
po

si
tio

n

(d) t = 60000

0 50 100 150 200 250 300
x position

0

50

100

150

200

250

300
y

po
si

tio
n

(e) t = 80000

0 50 100 150 200 250 300
x position

0

50

100

150

200

250

300

y
po

si
tio

n

(f) t = 100000

Figure 4.9: The time evolution of the stream plots of the lid-driven cavity with the Reynolds
number of 1000. The setting of the wall follows Figure 4.7. In this experiment, the lattice
grid size is (300, 300), the viscosity ν and the wall velocity are set to 0.03 and 0.1, respectively.
The computation of wall density follows Section 2.3.1. The initial density and velocity are
ρ(x) = 1.0,u(x) = (0, 0). The gif file for this experiment is available at Github as
described in footnote 3.

100 101 102 103

of processes

100

101

102

103

M
LU

PS

X × Y = 100 × 100
X × Y = 300 × 300
X × Y = 1000 × 1000

Figure 4.10: The scaling test of the lid-driven cavity simulation. The grid size is either 100 ×
100, 300 × 300 or 1000 × 1000. The set of numbers of processes are {2x | 0 ≤ x ≤ 11, x ∈ Z≥0}
and this set is chosen so that the interval of each plot is equally distributed. Note that both axes
are log-scale. The viscosity and the wall velocity are set to ν = 0.03 and 0.1 and we perform
the update T = 10000 times. The initial density and velocity are ρ(x) = 1.0,u(x) = (0, 0).

17

5

Conclusions
In this paper, we delineated the theoretical aspects of the LBM and the implementations of the
LBM. Chapter 1 described the motivation behind the numerical integrations and we explained
that the advantages of the LBM are the simple implementation and scalability with respect to
the computational resources.

Chapter 2 explained the theoretical aspects of the LBM and how those equations are plugged
into two-dimensional computational simulations. The governing equation of the particle move-
ment is the BTE and the BTE relaxes the particle distribution to the Maxwell velocity distribu-
tion. Thereafter, we showed the approximation and how we obtained each moment, i.e. physical
states such as density or velocity from the particle distribution. Then the discretization of each
equation and the boundary handlings were presented. In the descriptions, we also added the
reasons behind some tricks used in the implementations.

Chapter 3 showed the algorithms of each component. Especially, we focused on the expla-
nation of how the simulation should be implemented using numpy which is effective to speed
up Python implementations. Additionally, the MPI usage and the domain division method
were described. The domain decomposition is performed so that the load balance is optimized.
Note that each algorithm in the implementations was tested using unittest and abstracted as
much as possible so that each component can be reused and we can reduce the bugs over the
whole implementation. Additionally, we provided the running scripts and requirements.txt
to reproduce the experimental settings.

Chapter 4 presented the validations of each component using the comparison between the
analytical solutions and visualizes how the LBM works in the lid-driven cavity example. For
the validations, we used the shear wave decay, the Couette flow and the Poissuille flow. The
results showed that the simulated results coincided with the analytical solutions except for
the cases where the relaxation term ω is close to either 0 or 2. After the validations, we
performed the lid-driven cavity simulation and the result exhibited similar dynamics when we
have a constant Reynolds number and more noisy turbulence as the Reynolds number becomes
larger. Furthermore, we tested the scalability of the LBM in the lid-driven cavity simulation.
The experiments showed speedup in all the settings compared to the serial implementations.
On the other hand, the smaller domains had less efficiency and they even slowed down as the
number of processes increases. This observation corresponds to the intuition from Amdahl’s law
due to the latency of the communication and the waiting for the synchronization. Recall that
the parallel implementation was tested by the direct comparison of the velocity field with the
identical settings as the serial implementation.

18

Bibliography

[1] Praveen Padagannavar and Manohara Bheemanna. Automotive computational fluid dy-
namics simulation of a car using ansys. International Journal of Mechanical Engineering
and Technology (IJMET) Volume, 7:91–104, 2016.

[2] Krüger Timm, H Kusumaatmaja, A Kuzmin, O Shardt, G Silva, and E Viggen. The lattice
Boltzmann method: principles and practice. Springer: Berlin, Germany, 2016.

[3] Kerson Huang. Statistical mechanics, john wily & sons. New York, page 10, 1963.

[4] D Raabe. Overview of the lattice boltzmann method for nano-and microscale fluid dynamics
in materials science and engineering. Modelling and Simulation in Materials Science and
Engineering, 12(6):R13, 2004.

[5] Guy R McNamara and Gianluigi Zanetti. Use of the boltzmann equation to simulate
lattice-gas automata. Physical review letters, 61(20):2332, 1988.

[6] Prabhu Lal Bhatnagar, Eugene P Gross, and Max Krook. A model for collision processes in
gases. i. small amplitude processes in charged and neutral one-component systems. Physical
review, 94(3):511, 1954.

[7] B Caroli, C Caroli, and B Roulet. Non-equilibrium thermodynamics of the solidification
problem. Journal of crystal growth, 66(3):575–585, 1984.

[8] Roger Peyret and Thomas D Taylor. Computational methods for fluid flow.

[9] James D Sterling and Shiyi Chen. Stability analysis of lattice boltzmann methods. Journal
of Computational Physics, 123(1):196–206, 1996.

[10] Guo Zhao-Li, Zheng Chu-Guang, and Shi Bao-Chang. Non-equilibrium extrapolation
method for velocity and pressure boundary conditions in the lattice boltzmann method.
Chinese Physics, 11(4):366, 2002.

[11] Lars Pastewka and Andreas Greiner. Hpc with python: An mpi-parallel implementation of
the lattice boltzmann method. 2019.

[12] H Liu and JG Zhou. Lattice boltzmann approach to simulating a wetting–drying front in
shallow flows. Journal of fluid mechanics, 743:32–59, 2014.

[13] Sauro Succi. The lattice Boltzmann equation: for complex states of flowing matter. Oxford
University Press, 2018.

19

[14] Qisu Zou and Xiaoyi He. On pressure and velocity boundary conditions for the lattice
boltzmann bgk model. Physics of fluids, 9(6):1591–1598, 1997.

[15] Sorush Khajepor, Jing Cui, Marius Dewar, and Baixin Chen. A study of wall boundary
conditions in pseudopotential lattice boltzmann models. Computers & Fluids, 193:103896,
2019.

[16] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a structure
for efficient numerical computation. Computing in science & engineering, 13(2):22–30, 2011.

[17] Linlin Fei, Kai H Luo, and Qing Li. Three-dimensional cascaded lattice boltzmann method:
Improved implementation and consistent forcing scheme. Physical Review E, 97(5):053309,
2018.

[18] Bruce J Palmer. Transverse-current autocorrelation-function calculations of the shear vis-
cosity for molecular liquids. Physical Review E, 49(1):359, 1994.

[19] Berk Hess. Determining the shear viscosity of model liquids from molecular dynamics
simulations. The Journal of chemical physics, 116(1):209–217, 2002.

[20] Péter Nagy-György and Csaba Hős. A graphical technique for solving the couette-poiseuille
problem for generalized newtonian fluids. Periodica Polytechnica Chemical Engineering,
63(1):200–209, 2019.

[21] AA Mendiburu, LR Carrocci, and JA Carvalho. Analytical solution for transient onedimen-
sional couette flow considering constant and time-dependent pressure gradients. Revista de
Engenharia Térmica, 8(2):92–98, 2009.

[22] TP Chiang, WH Sheu, and Robert R Hwang. Effect of reynolds number on the eddy
structure in a lid-driven cavity. International journal for numerical methods in fluids,
26(5):557–579, 1998.

[23] Pijush K Kundu, Ira M Cohen, and D Dowling. Fluid mechanics 4th, 2008.

[24] Gene M Amdahl. Validity of the single processor approach to achieving large scale comput-
ing capabilities. In Proceedings of the April 18-20, 1967, spring joint computer conference,
pages 483–485, 1967.

20

	Introduction
	Lattice Boltzmann method
	The Boltzmann transport equation (BTE)
	Time-step update of the BTE
	Boundary handling
	Bounce-back from objects
	Periodic boundary conditions (PBC)

	Implementation
	Main routine
	Parallel computation by MPI
	Software quality

	Numerical results
	Validation experiments
	Shear wave decay
	Couette flow
	Poiseuille flow

	Lid-driven cavity

	Conclusions

